انرژی هسته ای

کربن 14 – کلید راهنمای گذشته

مقدار ماده باقی مانده از عنصر اولیه

زمان طی شده ( اگر نیمه عمر ماده را T بگیریم )

1/2

T

1/4

2T

1/8

3T

1/16

4T

1/32

5T

1/64

6T

1/128

7T

با مشخص کردن اینکه چه مقدار از هسته ای رادیواکتیو باقی مانده است متوجه می‌شویم که چند نیمه عمر ماده سپری شده و چون نیمه عمر عناصر را می‌دانیم به راحتی می‌توانیم سن اشیاء قدیمی را محاسبه نماییم.
عمر اشیاء قدیمی به کمک ایزوتوپ های رادیواکتیو کربن 14
C14 تعیین می‌شود که تغییرات آن بطور طبیعی اتفاق می‌افتد. به کمک زمان سنجی کربن 14 طول عمر اجسام را تا 60000 سال می‌توان تعیین کرد.
زمانی که نوترونهای پرتوهای کیهانی در اتمسفر با نیتروژن های 14 برخورد می‌کنند. به طور مداوم کربن 14 تولید می‌شود کربن 14 به سرعت با دی اکسید کربن هوا مخلوط شده و از طریق فوتوسنتز در گیاهان جذب می‌شود به این ترتیب کربن 14 در تمام موجودات زنده راه پیدا می‌کند پس قسمتی از همه کربن های موجود در بدن موجودات زنده کربن 14 است که نسبت تمرکز آن هم مقدار ثابتی است. اما کربن 14 یک عنصر رادیواکتیو است و با مرور زمان واپاشی کرده و تبدیل به عناصر دیگر می‌شود. زمانی که یک موجود زنده می‌میرد و یا گیاهی خشک می‌شود، دیگر کربن 14 جدیدی به طبیعت اضافه نمی شود اما کربن 14 های قدیمی شروع به واپاشی می‌کنند.
نیمه عمر کربن 14 حدود 5760 سال تعیین شده است. بنابراین زمانی که باستانشناسان یک تکه ذغال را در غار یا یک قطعه چوب را در یک بنای قدیمی پیدا می‌کنند، می‌توانند به دقت مقدار کربن موجود در آنها را اندازه گرفته و مقدرا کربن 14 آن را تعیین کنند و سپس با در نظر گرفتن میزان کربن 14 موجود در درختان امروزی مقدار کربن 14 این اجسام را در زمان خود مشخص کنند. و از این راه طول عمر جسم مورد نظر را به دست آورند.
برای اندازه گیری بقایای کربن 14 موجود در تکه چوبی که در یک پناهگاه قدیمی پیدا شده می‌توان آن را تجزیه نمود و عمرش را با دقت خوبی تعیین کرد. این امر، زمان شکسته شدن یا بریده شدن تکه چوب از درخت جهت ساختن پناهگاه را مشخص کرده در نتیجه دورانی را که انسانها از این چوب استفاده کرده اند تعیین می‌شود.
برای جدا کردن کربن 14 از دیگر عناصر، چوب را می‌سوزانند تا به صورت گاز متان یا اتان دربیاید گاز حاصل را که دارای کربن 14 است به مدت یک ماه درون یک محفظه نگه می‌دارند در این مدت ترکیبات اورانیوم که ممکن است باعث اندازه گیری غیر واقعی عمر شوند واپاشیده شده و مقدارشان به حداقل می‌رسد. سپس به وسیله دستگاهی میزان تشعشع اتم های کربن 14 موجود در نمونه را بررسی می‌کنند. و به این ترتیب عمر نمونه را مشخص می‌کنند. با وجود همه امتیازاتی که زمان سنجی کربن 14 داراست محدودیت هایی نیز دارد. کربن 14 نیمه عمر نسبتاً کوتاهی دارد و فقط جهت تعیین طول عمرهایی تا 60 هزار سال قبل مفید است. برای عمرسنجی موارد قدیمی تر باید از دیگر عناصر رادیواکتیو که نیمه عمر بیشتری دارند استفاده کرد. که البته اساس کار این زمان سنجی‌ها هم کاملاً مشابه کربن 14 است. به غیر از کربن 14 عناصر دیگری نیز در زمان سنجی بکار می‌روند که عبارتند از: اورانیوم 238 ( 7238) که پس از چندمین مرحله واپاشی به سرب 206 (
Pb206) تبدیل می‌شود. اورانیوم 235 (7235) که به سرب 207 (pb207) توریوم 232 که سرب 208 و پتاسیم 40 که به آرگون 40 تبدیل می‌شود.
زمانی که زمین شکل گرفته شامل ذخایری از ایزوتوپ هی اورانیوم 238 بوده است. نیمه عمر اورانیوم 238 در حدود 5/4 میلیارد سال است. دانشمندان معتقدند که هنگام تشکیل زمین اصلاً سربی وجود نداشته و تمام سرب موجود در کره زمین در اثر واپاشی اورانیوم بوجود آمده است. از آنجایی که ما نیمه عمر اورانیوم رامی دانیم و در ضمن می‌توانیم مقدار اورانیوم 238 و سرب موجود در یک نمونه را اندازه بگیریم می‌توانیم طول عمر سنگهایی را که متعلق به میلیاردها سال پیش هستند را مشخص کنیم. اکثر نمونه سنگها شامل دو مقدار مساوی از اتم های اورانیوم 238 و سرب 206 می‌باشند یعنی مقدار اورانیوم نصف شده است یعنی اورانیوم یک نیمه عمر خود را گذرانده است و این سنگها 5/4 میلیارد سال قدمت دارند. تا مدتها تصور می‌شد که زمین فقط 100 میلیون سال عمر دارد، اما با این روش عمر زمین را حدود 5/4 میلیارد سال تعیین نموده اند. 

اورانیوم و انرژی هسته ای - ۳

تقریبآ تمام فعالیت های بشری ایجاد موادی می کند که دیگر مورد نیاز نیست و باید با مدیریت صحیح جمع آوری شوند و از محیط زندگی دور شوند. این موضوع شامل جمع آوری زباله های منزل و پسماندهای کارخانه جات شده و تا زباله های اتمی و ... ادامه دارد.

اما زباله های اتمی به دلیل تشعشعاتی که دارند باید بطور خاص تحت نظر باشند و طی مراحل پیچیده از محیط دور شده و دفن شوند. واقعیت آن است که هنوز دانشمندان در حال بررسی روشهایی هستند که توسط آنها بتوانند در پروسه از بین بردن زباله های اتمی کمترین آسیب را به طبیعت وارد آورده، ریسک استفاده از این انرژی را کاهش دهند.

زباله های اتمی یا رادیواکتیو عمومآ پس از استفاده از مواد رادیواکتیو در نیروگاه ها، مصارف پزشکی و صنعتی و ... بدست می آید که معمولآ آنها را با توجه به میزان تشعشع به سه دست سطح پایین، متوسط و بالا (
Low, Intermediat & High Level
) تقسیم می کنند. این تقسیم بندی بر اساس قوانین بین المللی صورت گرفته و برای هر کدام از این دسته ها شرایط خاص جمع آوری و دفن تدبیر شده است.
Low-Leve : زباله های سطح پایین از نوع بی خطرترین مواد رادیواکتیو هستند که مدت زمان بسیار کوتاهی توانایی تشعشع دارند. لباس کارکنان درگیر با این مواد، ابزار و تجهیزات کاری آنها، فیلترها و ... از این دسته مواد هستند. این نوع از زباله ها نیازی به محافظت های مخصوص (Shield کردن) ندارند، اما آنگونه هم نیستند که مانند زباله های عادی با آنها برخورد شود. آنها معمولآ سوزانده می شوند و در عمق کم دریا یا خشکی دفن می شوند.
Intermediate-Leve : این دسته از زباله ها شامل موادی مانند پسابهای شیمایی، روکش فلزی سوختها و بسیاری از مواد زائد نیروگاههای اتمی هستند. این نوع مواد دارای عمر کوتاه تشعشع هستند اما لازم است که توسط پوشش های مخصوص محافظت یا Shield شوند، چرا که در عمر محدود خود تشعشع قابل توجه دارند، لذا این مواد را معمولآ در میان بلوک های بتون قرار می دهند و در مکانهای مخصوص انبار می کنند.
High-Leve : از نمونه این نوع از زباله ها می توان دقیقآ به تفاله های سوخت هسته ای رآکتورها اشاره کرد، که شرایط نگهداری بسیار سخت تر و پر هزینه تری دارند. آنها باید با پوشش های مخصوص، محافظت یا Shield شوند و سپس در دماهای زیر صفر در انبارهایی در عمق حد اقل 1.5 کیلومتری زمین نگهداری شوند.

اما با وجود آنکه در نوشته های قبل کم و بیش راجع به موضوع تشعشع صحبت کردیم، بهتر است قبل از ادامه بحث، کمی بیشتر راجع به این موضوع صحبت کنیم.

تشعشع رادیواکتیو چیست؟
تشعشعات رادیواکتیو را در واقع می توان انتشار بی اختیار انرژی از برخی مواد یا بهتر بگوییم اتمهای ناپایدار دانست.

بسیاری از اتمهایی که در طبیعت وجود دارند و مواد اطراف ما را تشکیل می دهند از اتمهای با ثبات تشکیل شده اند، بگونه ای که چنانچه شرایط محیطی آنها تغییر نکند، آن مواد تا ابد به همان حالت می مانند. اما برخی از اتمها نیز وجود دارند که نمی توانند وضعیت خود را ثابت نگهدارند و به تاچار برای رسیدن به حالت تعادل شکسته می شوند و به اتمهای دیگری تبدیل می شوند.

این اتمها در مرحل شکست از خود انرژی آزاد می کنند (به صورت اشعه یا ذره)، به موادی که از اینگونه اتمها تشکیل می شود مواد رادیواکتیو گفته می شوند. تشعشعات آنها هم تشعشعات رادیواکتیو نامیده می شود.

اورانیوم، توریوم یا پتاسیوم از جمله این مواد هستند که به اتم های سبکتر تبدیل می شوند. انرژی آزاد شده طی این پروسه تبدیل شامل امواج پر انرژی و نیز ذراتی است که با سرعت زیاد حرکت می کنند، هیچکدام از این ذرات یا امواج قابل دید نیستند.

لازم به ذکر است که برخی از اتم های عادی مانند کربن یا رادون با وجود پایدار بودن، دارای ایزوتوپ های ناپایدار هستند. این مواد بالقوه می توانند تشعشعات رادیواکتیو داشته باشند.

تشعشع در مواد رادیواکتیو بصورت طبیعی رخ می دهد و مدت زمانی که لازم است تا نیمی از اتمهای بی ثبات تبدیل به اتمهای پایدار شوند را نیم عمر آن ماده رادیواکتیو گفته می شود. نیمه عمر مواد رادیو اکتیو می تواند از چند میلی ثانیه تا چند صد هزار سال باشد.

انرژی بسیار زیاد
همانطور که مشخص است ذخیر کردن و از بین بردن مواد رادیواکتیو سطح بالا نیاز به مدیریت و تکنولوژی بالا دارد، اما مشخص ترین و ساده ترین کار ایزوله کردن به منظور جلوگیری از انتشار تشعشع و نیز سرد کردن آنها است. از زمان دست یابی به روشهای صحیحی ذخیره و دفن اولین زباله های اتمی، بیش از 40 سال است که می گذرد و کشورها ناچار هستند که همچنان آنها را در شرایط خاص نگهداری کنند.

حدود 30 گرم از یک زباله اتمی سطح بالا می تواند حدود 8000 کیلووات ساعت انرژی تولید کند. این مقدار انرژی معادل چیزی حدود 8 تن ذعال سیاه با کیفیت بسیار بالا است. بنابراین مشاهده می کنید که حتی زباله های مواد رادیواکتیو تا چه حد می تواند حاوی انرژی باشند که اگر درست مهار نشود، خطر ساز خواهد بود.

دفن اورانیوم مصرف شده
پس از استفاده از اورانیوم برای تولید انرژی در رآکتور هسته ای، این سوخت دیگر قابل استفاده نیست و باید به روشی بازیافت یا دفن شود، که به دلیل تشعشع زیاد کار ساده ای نیست.

روش کار این است که معمولآ سوخت مصرف شده را در حوضچه هایی برای سرد شدن اولیه نگهداری می کنند، به این ترتیب علاوه بر سرد شدن تا حدی از شدت تشعشع آنها کاسته می شود. این حوضچه ها به گونه ای ساخته شده اند که اجازه وارد کردن آسیب به طبیعت را از این مواد می گیرند، درواقع می توان برای مدتهای طولانی این زباله ها را در این حوضچه ها نگهداری کرد اما به دلایل بسیاری از جمله موارد اقتصادی این کار ممکن نیست.

لذا باید روی سوخت فرآیندهایی انجام بگیرد تا بتوان آنرا در انبارهایی که از آنها نام بردیم ذخیره کرد. این فرآیندها شامل فعالیت هایی است که توسط آنها اورانیوم و پلوتونیوم (پلوتونیوم به دلیل سادگی عملیات
fission بیشتر در ساخت سلاح های اتمی بکار برده می شود) از سایر مواد جدا می شوند. برای اینکار میله های سوختی را خرد کرده و آنها را در ظروف اسید قرار می دهند، اورانیوم و پلوتونیوم بازیافت شده به ابتدای چرخه سوخت باز می گردند تا قابل استفاده شوند و مازاد تفاله های سوختی را برای دفن آماده می کنند. 

 

 

هالید نقره

مفاهیم پایه

هالیدهای نقره گروهی از ترکیبات هستند که از پیوند اتمهای نقره با اتم‌های گروه هالوژن تشکیل می‌شود. این مواد در برابر نور و اشعه حساسیت زیادی از خود نشان می‌دهند. بنابراین از مواد در تهیه تصاویر فتوگرافی و رادیوگرافی استفاده می شود.

خصوصیات فیزیکی هالید نقره

هالیدهای نقره در ظاهر مانند نمکهای دیگر به رنگ سفید یا زرد کم‌رنگ دیده می‌شود و پیوند بین آنها از نوع یونی می‌باشد. پس نیروی الکتریکی بین آنها باعث حفظ وضعیت آنها در ساختار سه بعدی منظم کریستال می‌شود.

خصوصیات شیمیایی هالید نقره

کریستال هالید نقره خالص نسبتا پایدار است و به سادگی تحت تاثیر مواد شیمیایی قرار نمی‌گیرد اما در شرایط معینی با استفاده از مواد شیمیایی که به عنوان دهنده الکترون عمل می‌کنند و اصطلاحا به آنها مواد احیا کننده (کاهنده) می‌گویند می‌توان هالیدهای نقره را احیا کرد.

اثر تابش بر روی هالیدهای نقره

هنگامی که فوتونی در کریستال جذب می‌شود در این حالت فوتونهای تابشی به هالیدها مثل یون برمید برخورد کرده و باعث آزاد شدن الکترون می‌شود. که این الکترون در مدت زمان کوتاه درون کریستال حرکت کرده و در دام الکترونی با انرژی پایین و نزدیک به سطح کریستال به نام نقطه حساس قرار می‌گیرند. نقطه حساس در اثر ناخالص‌سازی مصنوعی کریستالهای هالید نقره در حین ساخت ایجاد می‌شود. پس از جذب الکترونها در نقطه حساس یونهای مثبت نقره‌ای که پیوند آنها در شبکه بر اثر برخورد فوتون از بین رفته به سمت نقطه حساس کشیده می‌شود.
هر کدام از این یونهای مثبت یک الکترون موجود در نقطه حساس را جذب کرده و به اتم نقره فلزی تبدیل می‌شود. این اتم‌های نقره جهت ظاهر شدن کریستال بسیار ناچیزند. اما باعث اثرپذیری شدید سایر کریستالهای تابش شده در برابر مواد احیاکننده می‌شود. هالیدهای نقره به نور حساسیت دارند. ولی نقره‌های فلزی هیچ حساسیتی به نور ندارند و نسبت به نور ، کدر هستند. بر این اساس قسمتهای تیره تصویر رادیوگرافی توسط نقره فلزی ساخته می‌شود.

نحوه ساخت هالیدهای نقره

هالیدهای نقره نتیجه واکنش شیمیایی نیترات نقره و یک هالید قلیایی مانند برمید پتاسیم می‌باشند. این مرحله به عنوان قسمتی از مرحله تولید امولسیون فیلم‌های اشعه ایکس در کارخانه مربوط می‌شود.

 

 

مواد مورد نیاز در راکتورهای هسته‌ای

 

دیدکلی

خواص فیزیکی مواد ، اهمیت ویژه‌ای در کاربرد آنها در راکتورهای هسته‌ای دارد. خواصی چون استحکام ، سختی ، قابلیت کششی ، نقطه ذوب ، نقطه جوش ، چگالی و رسانندگی گرمایی همه مواردی هستند که در انتخاب ماده برای اجزای مختلف راکتور ، دارای اهمیت می‌باشد.

سوخت راکتور

اورانیوم

متداول ترین ماده سوخت برای راکتورهای هسته‌ای اورانیوم است، که می‌تواند به صورت خالص ، یعنی اورانیوم فلزی و یا به صورت ترکیب مثل اکسید اورانیوم و یا کربور اورانیوم بکار برود. اورانیوم ، فلز نسبتا نرم و قابل کششی است که در دمای بالا به آسانی در هوا و آب اکسید می‌شود. نقطه ذوب آن 1133 درجه سانتیگراد است.

پلوتونیوم

چون فلز پلوتونیوم تا رسیدن به نقطه ذوب 640 درجه سانتیگراد دارای تعداد زیادی فاز بلوری است، سوخت مناسبی برای راکتور نمی‌باشد. به عنوان سوخت راکتور ، پلوتونیوم را به صورت ، PUO2 بکار می‌برند. نقطه ذوب این ترکیب 2400 درجه سانتیگراد است.

توریوم

به جز در چند راکتور با خنک کننده گازی دما - بالا ، توریوم تاکنون به عنوان سوخت راکتور کاربرد زیادی نداشته است. نقطه ذوب فلزات توریوم خالص حدود 1700 درجه سانتیگراد است. به علت پایداری بهتر ، این عنصر برتر از اورانیوم است. اما ما به صورت خالص به عنوان سوخت بکار نمی‌رود. بلکه ان را به صورت دی اکسید توریوم ThO2 کربوتریوم ThC2 بکار می‌برند.

کند کننده‌ها

ویژگیهای لازم برای کند کننده‌های راکتورهای حرارتی ، یعنی عدد جرمی پایین ، سطح مقطع جذب نوترون خیلی پایین ، سطح مقطع پراکندگی بالا و گزینش را به چند ماده محدود می‌کنند. هیدروژن و دوتریوم ، کربن و برلیوم تنها عناصری هستند که برای کند کنندگی مناسب‌اند. هیدروژن و دوتریم ، به علت گاز بودن ، به اندازه کافی چگال نیستند و باید به صورت ترکیب بکار روند. بنابراین انتخاب کند کننده برای راکتورهای حرارتی به سه ماده زیر محدود می‌شود.

  • آب :
    آب
    یک انتخاب بدیهی برای کند کننده راکتورهای حرارتی است و می‌تواند به عنوان خنک کننده هم بکار رود. آب دارای سطح مقطع جذب نسبتا بالایی است. کند کننده آب برای بحرانی شدن نیاز به اورانیوم غنی شده دارند.

  • آب سنگین :
    بسیاری از خواص فیزیکی و ترمودینامیکی آب سنگین شبیه آب معمولی است. فرق اساسی آب سنگین با آب معمولی در این است که دوتریم سطح مقطع جذب خیلی کمتری نسبت به هیدروژن دارد.

  • گرافیت :
    ویژگیهای هسته‌ای این ماده ، مثل قدرت کند کنندگی و سطح مقطع جذب به خوبی ویژگیهای آب سنگین نیست. اما نوع خالص آن را می‌توان تهیه کرد. خواص ساختاری و گرمایی آن خوب است اما در دماهای بالا و هوا ترکیب می‌شود. گرافیت دارای رسانندگی گرمایی بالایی است.

خنک کنندهها

ویژگیهای خنک کننده‌ها

  • خواص ترمودینامیکی خوب ، یعنی رسانندگی گرمایی ، گرمای ویژه بالا و چسبندگی پایین.

  • عدم برهمکنش شیمیایی با قسمتهای دیگر راکتور.

  • سطح مقطع جذب نوترونی خیلی پایین.

  • پرتوزا نشدن در اثر واکنش‌های گاما - نوترون که ممکن است هنگام عبور خنک کننده از قلب راکتور رخ بدهد.

مواد مناسب خنک کننده

هلیوم

هلیوم گازی است بی اثر ، دارای خواص ترمودینامیکی خوب و خطر تابش هم ایجاد نمی‌کند. بنابراین ظاهرا می‌توان آن را به عنوان خنک کننده ایده آل راکتورهای گازی تلقی کرد. اما متاسفانه به سادگی مقدار زیاد آن قابل دسترسی نیست. در حال حاضر کاربرد این گاز به عنوان خنک کننده راکتور محدود به چند راکتور دما – بالای گازی در آمریکا و آلمان است.

فلزات مایع

فلزات مایع ، به دلیل خواص ترمودینامیکی خوبشان ، به خصوص رسانندگی گرمایی بالای آنها ، خنک کننده‌های با لقوه خیلی خوبی برای راکتورها هستند. سدیم ، لیتیم ، جیوه و آلیاژهای سدیم – پتاسیم همه مناسب‌اند. ولی از میان آنها سدیم به مقدار قابل ملاحظه‌ای ، منحصرا در راکتورهای سریع زاینده مورد استفاده قرار گرفته است.

حفاظ‌های راکتور

ویژگی‌های مواد محافظ

  • سطح مقطع جذب نوترون خیلی پایین است.

  • رسانندگی گرمایی بالا دارند.

  • استحکام خوب در دماهای بالا برای مقاومت در مقابل تنش حرارتی

  • تغییر شکل سوخت و فشار ناشی از انباشت پاره‌های شکافت در داخل حفاظ

مواد کنترل

موادی که برای راکتور مورد استفاده قرار می‌گیرند باید دارای سطح مقطع جذب بالایی باشند.

بور

بور متداول ترین ماده کنترل است. از بور به تنهایی نمی‌توان استفاده کرد. اما می‌توان آن را با فولاد در آمیخت یا به صورت کربور محبوس در کپسول‌های فولادی مورد استفاده قرار داد.

ایندیم و کادمیوم

ایندیوم و کادمیوم هر دو سطح مقطع جذب بالایی دارند. اما نقطه ذوب آنها پایین تر از آن است که بتوان از آنها در راکتورهای قدرت استفاده کرد.

هافنیم

هافنیوم دارای استحکام مکانیکی کافی و مقاومت خوبی در برابر خوردگی است. لذا ماده کنترل خوبی است.

اگادولینیم

گادولینیم در بعضی راکتورهای گازی پیشرفته به عنوان سم قابل سوختن بکار می‌رود.  

 

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد