X
تبلیغات
رایتل

welcome to ROZEGARE NAMARD به دنیای نامردو بیرحم خوش آمدید

گداخت هسته‌ای وفرایند غنی سازی اورانیوم ومقا یسه دز دریافتی با دو

فرایند غنی سازی اورانیوم

کاربرد و شیوه های مختلف جداسازی یا غنی سازی اورانیوم 235

در طبیعت اورانیوم شامل کمتر از یک درصد ایزوتوپ اورانیوم 235 است. مواد انفجاری هسته ای به اورانیومی که حداقل دارای 20 درصد اورانیوم 235 غنی شده است نیاز دارند. بطور ایده آل اورانیوم 235 نود درصدی بکار می رود. برای افزایش درصد اورانیوم 235 به اورانیوم 238، اورانیوم باید "غنی سازی" شود.
چرخه سوخت اورانیوم با استخراج و آسیاب کانسنگ اورانیوم جهت تولید "کیک زرد" شروع شده و سپس به هگزافلوراید اورانیوم (
UF6) تبدیل می شود. ماده اخیر پس از آن غنی سازی می شود تا به سوخت هسته ای مبدل گردد.
فرایندهای جداسازی و غنی سازی ایزوتوپ اورانیوم:
این روشها عبارتند از:

1) جداسازی ایزوتوپی الکترومغناطیسی

2) دیفوزیون گرمایی

3) پخش دیفوزیون گازی

4) سانتریفوژ گازی

5) فرایندهای آئرودینامیکی

6) جداسازی ایزوتوپی لیزری – که شامل دو روش زیر است

الف) جداسازی ایزوتوپی لیزری با بخار گازی (AVLIS) (atomic vapor laser isotope separation)

ب) جداسازی ایزوتوپی لیزری مولکولی (MLIS) (molecular laser isotope separation)

7) تبادل یونی و شیمیایی

8) فرایند جداسازی پلاسمایی (PSP)

در تمام صنعت هسته ای دنیا، اورانیوم بوسیله یکی از دو روش: پخش گازی و سانتریفوژ گازی غنی می شود.

 

ظرفیت تولید در سال 2002
x 1000 kg SWU/yr

روش غنی سازی

 

10,800

پخش گازی

فرانسه

5,850

سانتریفوژ گازی

آلمان – هلند – بریتانیا

900

سانتریفوژ گازی

ژاپن

8,000

پخش گازی

آمریکا

20,000

سانتریفوژ گازی

روسیه

1,000-1,300

بیشتر سانتریفوژ گازی

چین

5

سانتریفوژ گازی

پاکستان

47,000 تقریباً

 

مجموع

 

از آنجایی که فرایند کاربردی در ایران، روش سانتریفوژ گازی است در باره روند پخش گازی تنها به ذکر این توصیف اکتفا می شود که در روش پخش گازی، هگزافلوراید اورانیوم تحت فشار از میان یک سری دیافراگم ها یا غشاهای متخلخل گذر کرده از آنجایی که مولکولهای اورانیوم 235 سبکتر از مولکولهای اورانیوم 238 است آنها سریعتر حرکت کرده و امکان کمی بیشتری برای عبور از سوراخهای موجود در غشا را دارند. گاز UF6 که از طریق غشا پخش می شود اندکی غنی بوده ضمن اینکه آنچه که نمی تواند گذر کند تهی از اورانیوم 235 است.

 

سانتریفوژ گازی

سانتریفوژ گازی نوعی هیپرسانتریفوژ است که برای تولید اورانیوم غنی شده استفاده می شود. این روش در آلمان در طی جنگ جهانی دوم توسعه یافت اما موارد کاربرد واقعی آن تنها در دهه پنجاه و شصت میلادی بود.

در این روش از اثر سانتریفوژ که دوران سریع ماده سبب می شود تا ایزوتوپهای سنگین تر به طرف دیواره خارجی حرکت کنند استفاده شده و غالبا با استفاده از سانتریفوژ نوع زیپ (Zippe-type centrifuge) در شکل گازی انجام می شود. عامل جداسازی در این روش به تفاوت جرمی ایزوتوپهایی که باید جداسازی شوند بستگی دارد.

نمونه نیروگاه های غنی سازی اورانیوم که از این روش استفاده می کنند در Gronau/Wesphalia (آلمان) و بوسیله URENCO (اورنکو یک گروه صنعتی است که متشکل از شرکتهای انگلیسی، آلمانی و هلندی می باشد) در Capenhurst (بریتانیا) هستند.

علاوه بر نیروگاههای اورنکو در بریتانیا، هلند و آلمان، چهار نیروگاه روسیه که چهل درصد ظرفیت جهان را بالغ می شوند از این شیوه استفاده می کنند. ژاپن، چین و برزیل نیز نیروگاههای سانتریفوژ را می گردانند. پاکستان تکنولوژی غنی سازی سانتریفوژ را توسعه داده و بنظر می رسد که آن را به کره شمالی فروخته است ایران نیز دارای تکنولوژی سانتریفوژ پیچیده ای است.

در ایالات متحده آمریکا هیچ نیروگاه سانتریفوژ گازی فعالیت ندارد اما بتازگی آمریکا و فرانسه نیز درحال جایگزینی تکنولوژی سانتریفوژ بجای نیروگاههای پخش گازی قدیمی هستند. این روش نسبت به روش پخش گازی به انرژی کمتری برای رسیدن به جداسازی مشابه نیاز داشته و از این جهت غالبا این شیوه که با استفاده از هگزافلوراید اورانیوم انجام می شود جایگزین شیوه پخش گازی شده و بجای آن استفاده می گردد.

در غنی سازی اورانیوم با روش سانتریفوژ گازی، از تعداد زیادی سیلندر دوار که به صورت موازی و سری کنارهم قرار داده شده اند استفاده می شود. ماشینهای سانتریفوژ جهت تشکیل "ترین ها" (trains) یا "مجموعه آبشارها یا کاسکادها" (سیستمهای غنی سازی دنباله ای) بهم مرتبط هستند.

این دوران باعث ایجاد یک نیرو مرکزگریز می شود بطوری که مولکولهای گازی سنگین تر (که شامل اورانیوم 238 هستند) بطرف خارج سیلندر حرکت کرده و مولکولهای گازی سبکتر (که شامل اورانیوم 235 است) در قسمت مرکزی (محور گردنده) جمع می شوند.

گاز به داخل یک سری لوله های خلا تغذیه شده که هر یک شامل یک گردنده با بیش از دو متر طول و 20-15 سانتیمتر قطر هستند. وقتی که گردنده ها با سرعت بالا می چرخند (rmpا 70000-50000) مولکولهای سنگین تر حاوی اورانیوم 238 در لبه خارجی سیلندر متمرکز می شوند. افزایش اورانیوم 235 نیز در نزدیک مرکز وجود دارد. برای رسیدن به جداسازی موثر، به سانتریفوژهای با سرعتهای بالا نیاز است. مراحل سانتریفوژ معمولاٌ شامل تعداد زیادی سانتریفوژ به صورت موازی است.

این جریان گازی که کمی از اورانیوم 235 غنی شده است بازگیری شده و به داخل مرحله بالاتر بعدی تغذیه می شود ضمن اینکه جریان گازی کم تهی شده به مرحله پایین تر قبلی مجددا بازیابی می شود. میزان غنی سازی اورانیوم 235 حاصل از یک مرحله تک واحدی سانتریفوژ گازی، بسیار بیشتر از میزان آن در یک مرحله تک واحدی غنی سازی پخش گازی است اما به تکنولوژی توسعه یافته ای برای تولید ماشینهای سانتریفوژ نیاز می باشد. این ماشینها بدلیل سرعتهای دوران مورد نیاز در آنها، به مهندسی متالورژی پیچیده با دقت بالا و نیاز دارند.

بخاطر ماهیت خورندگی UF6، تمام اجزایی که در تماس با این ماده هستند باید از مواد مقاوم در برابر خوردگی ساخته شوند. ظرفیت جداسازی یک سانتریفوژ تک واحدی، با طول گردنده و سرعت دیواره گردنده افزایش می یابد. درنتیجه سانتریفوژهایی که دارای گردنده های یا روتورهای پرسرعت و بلند باشند اهداف برنامه های توسعه سانتریفوژ هستند.

مواد مناسب برای گردنده ها شامل آلیاژهای آلومینیم، تیتانیم، فولاد ماراژین (maraging steel) یا ترکیباتی که با برخی شیشه های خاصی تقویت می شوند، فیبرهای کربنی هستند. درحال حاضر فولاد ماراژین متداول ترین ماده گردنه است.

برای مصارف غیرنظامی، اورانیوم طبیعی که شامل 0.7 درصد اورانیوم 235 است به حدود 5-3 درصد اورانیوم 235 غنی شده و اورانیوم تهی شده شامل 0.3-0.2 درصد اورانیوم 235 می باشد. اما برای کاربردهای نظامی، اورانیوم بسیار غنی شده (HEU) که شامل بیش از 20 درصد اورانیوم 235 است معمولاٌ تولید می شود.

از زمان راه اندازی، یک سانتریفوژ مدرن بمدت بیش از 10 سال بدون نگهداری به کار خود ادامه می دهد.

مجموعه آبشارها یا کاسکادهای بزرگ سانتریفوژ گازی که در کشورهای فرانسه، آلمان، بریتانیا، و چین مورد استفاده قرار می گیرند برای تولید اورانیومی است که برای مصارف داخلی و نیز صادرات است. اما در مورد ژاپن این موارد صرفا جهت مصرف داخلی است. یک نیروگاه سانتریفوژ گازی مهم، در پیکتون اوهایوی آمریکا واقع است.

این روش علاوه بر انرژی کمتر، به نیروگاه های با مقیاس بمراتب کوچکتری نیاز داشته و از این جهت برای کشورهای کوچکی که مبادرت به تولید سلاحهای هسته ای می نمایند دارای امکان پذیری اقتصادی است.

روسیه صنعت عظیم سانتریفوژ را از اتحاد جماهیر سابق به میراث برده است. گفته می شد که عراق نیز این روش را برای دستیابی به سلاحهای هسته ای بکار گرفته بود. تصور می شود که پاکستان بااستفاده از این روش درحال ساخت یک کاسکاد کوچکتر جهت اهداف نظامی و توسعه سلاحهای هسته ای خود است.

باید توجه کرد که برای تولید تنها یک سلاح هسته ای در سال، به چندین هزار سانتریفوژ نیاز می باشد.


مقا یسه دز دریافتی با دز زمینه

 

اشعه ایکس چیست و چه کار می کند ؟

اشعه x نوعی از انرژی تابشی مثل نور یا امواج رادیویی می باشد . برخلاف نور اشعه x می تواند از بدن عبور کند ، که این توانایی به رادیولوژیست این امکان را می دهد تا تصاویری از ساختار داخلی بدن تهیه کند . رادیولوژیست می تواند این تصاویر را در فیلم فوتوگرافیک یا در TV یا مانیتور کامپیوتر به نمایش درآورد.

آزمایشات پرتونگاری اطلاعات با ارزشی در بازه سلامتی فراهم می کنند و نقش مهمی در کمک به تشخیص توسط پزشک باز می کنند . در بعضی موارد از اشعه x به عنوان ابزار کمکی جهت قرار دادن تیوبها یا وسایل دیگر در بدن و یا در آزمونهای درمانی استفاده می شود .

اندازه گیری دز پرتوها :

واحد علمی اندازه گیری برای دز پرتو ،‌ همان دز مؤثر رایج یعنی میلی سیورت ( msv )  است .واحدهای دیگر اندازه گیری شامل :‌ rad ،‌ rem ، roentgen  و  sievert هستند .

چون بافتها و ارگانهای متفاوت پرتوها را بصورت متفاوت جذب می کنند،‌دزواقعی درقسمتهای مختلف بدن متفاوت است .برای تعریف دز مؤثر از میانگین دز دریافتی در کل بدن استفاده می شود .دز مؤثر حساسیتهای نسبی بافتهای متفاوت اکسپوز شده را توضیح می دهد . این فاکتور ، کمیتی برای ارزیابی ریسک و مقایسه منابع بسیار مشابه اکسپوژر در محدوده ای از تشعشات طبیعی تا آزمونهای رادیوگرافیکی می باشد .

 

منابع طبیعی اکسپوژر : Back ground expouser

ما در همه حالت توسط منابع طبیعی اکسپوز می شویم.یک فرد در USA به طور متوسط در سالMSV 3(میلی سیورت)از منابع رادیواکتیو طبیعی و اشعه کیهانی خارج از فضا دز موثر دریافت می کند .این دزهای زمینه درسراسر کشور یکسان نیستند . مردمی که در مناطق مرتفع کلرادو Colorado یا نیومکزیکو زندگی می کنند msv 5 / 1 ‌در سال ،بیشتر از کسانی که در مناطق هم سطح دریا زندگی می کنند دز دریافت می کنند .

یک دز اضافه از اشعه کیهانی ، در طول یک پرواز جهانی از یک منطقه ( مرز) به منطقه(مرز)دیگر حدود msv 03 / 0می باشد . ارتفاع از سطح دریا در این زمینه نقش مهمی بازی می کند . اما بزرگترین منبع تشعشع زمینه ،‌ گاز رادن مصرفی در منازل می باشد . چیزی حدود msv 2 در سال . مثال دیگر منابع پرتوزای زمینه ، رادن از منطقه ای به منطقه دیگر در کشور فرق می کند .

این مطلب را با یک مثال ساده توضیح می دهیم :
اینطور می توان مقایسه کرد : اشعه تابشی در پرتونگاری از ریه برابر مقدار اشعه دریافتی از محیط در طی 10 روز است .

در جدول زیر از مؤثر در چندین آزمایش رادیوگرافی با دز زمینه مقایسه شده اند :

             آزمون

       دز موثر تشعشع

   در مقایسه با دز زمینه

      ( تشعشع طبیعی )

منطقه شکم :

سی تی اسکن شکم

           Msv  10

             3 سال

سی تی اسکن بدن

           Msv  10    

             3 سال

IVP         

           Msv 6 / 1

             6 ماه

رادیوگرافی : lower GI

           Msv 4

             16 ماه

رادیوگرافی : upper GI

           Msv 2

              8 ماه

سیستم اعصاب مرکزی :

سی تی اسکن مغز

           Msv 2

             8 ماه

ریه :

رادیوگرافی ریه

           Msv  1/ 0

            10 روز

سی تی اسکن ریه

           Msv 8

            3 سال

پرتونگاری از کودکان :

          Voiding  cystourethrogram

10-5 ساله ها : Msv 6 / 1

              6 ماه

نوزادان :           Msv  8 / 0

              3 ماه

پرتونگاری از خانمها :

ماموگرافی

           Msv 7 / 0

             3 ماه

 

اهمیت بکارگیری اشعه x : 

safety

مثل تمام پروسه های ( آزمونهای ) پزشکی اشعه x وقتی با دقت استفاده شود safe  است . رادیولوژیست ها و پرتوکاران طوری آموزش دیده اند که با حداقل مقدار اشعه x ، نتایج مورد نیاز را فراهم کنند . مقدار پرتو استفاده شده در اکثر آزمایشات بسیار اندک و فواید آن بر ریسک خطر آن می چربد.

اشعه x فقط زمانی که سوییچ آن به صورت لحظه ای روشن ( on ) می شود تولید میگردد ، مثل نور مرئی ،‌ بعد از خاموش کردن سوییچ دیگر هیچ اشعه ای باقی  نمی ماند .

اشعه x در زندگی :

تصمیم در انجام آزمونهای اشعه x یکی از تصمیمات پزشکی است که بر پایه فواید آزمایش و ریسکهای بالقوه این پرتوها اخذ می گردد .

برای آ‍زمایشات با دز پائین،‌تهیه فیلم توسط تکنولوژیست معمولاً تصمیم آسانی است .برای آزمایشات با دوزبالاتر مثل CT Scan یا آزمونهایی که با ماده حاجب ( dyes ) ید دار یا باریم انجام می شود ،‌ رادیولوژیست سوابق آزمونهای پرتونگاری بیمار را مد نظر قرار می دهد .

اگر بیمار آزمونهای پرتونگار متوالی داشته است و اکنون نوع مراقبتهای پزشکی خود را تغییر داده است ،‌‌نگهداری و حفظ آزمونهای پرتونگاری قبلی ،‌‌ ایده خوبی است.این به پزشک کمک می کند تا آگاهانه تصمیم بگیرد .همچنین مطلع نمودن پزشک از حاملگی یا احتمال آن ،‌ قبل از انجام آزمونهای پرتونگاری مخصوصاً‌ پرتونگاری از شکم یا لگن بسیار مهم است .

حاملگی و اشعه x :

مثل تمام مراقبتهای پزشکی دیگر ،‌ دانستن اینکه بیمار حامله است یا احتمال حاملگی وجود دارد بسیار مهم است . بطور مثال حاملگی می تواند بسیاری از علائم یا یافته های پزشکی را موجه کند . وقتی یک بیمار حامله ، مریض است یا مجروح شده است ، پزشک ، درمانهای پزشکی را بسیار به دقت انتخاب می کند تا رشد جنین را از خطرات بالقوه مصون نگه دارد. این امر در بکارگیری اشعه x نیز صادق است . در حالیکه قسمت اعظم آزمونهای پرتونگاری برای جنین های رشد یافته ،‌ ریسک خطرناک مشخص ندارند ، ممکن است درصد کمی از ابتلا به بیماریهای جدی وجود داشته باشد . ریسک واقعی بستگی به مدت زمان حاملگی ( ماه چندم حاملگی ) و نوع اشعه x دارد. برای مثال در مطالعات سونوگرافی از اشعه x استفاده نمی شود و هرگز ریسک مشخص برای حاملگی ندارند . در پرتونگاری اشعه x از سر ،‌ بازوها و پاها و ریه ، معمولاً جنین به طور مستقیم اکسپوز نمی شود و بطور معمول تکنولوژیست تمهیداتی می اندیشد که جنین در بیماران حامله ،‌ به طور مستقیم اکسپوز نشود .

گاهی بیماران حامله ، به آزمونهای ناحیه شکم و لگن نیازمندند . در این صورت پزشک آزمونهای دیگری به جز آزمونهای اشعهx درخواست خواهد کرد و یا اینکه تعداد آزمونهای پرتونگاری را به حداقل خواهد رساند .

آزمونهای خیلی استاندارد اشعه x از شکم معمولاً ریسک جدی و خطرناکی برای جنین ندارند . بعضی از آزمونها مثل CT Scan از شکم و لگن مقدار اشعه زیادی را به جنین در حال رشد می رسانند .

مطلع نمودن رادیولوژیست ازحاملگی یااحتمال آن برای طرح ریزی مراقبتهای پزشکی مناسب برای بیماروجنین هردو،الزامی است.به یاد داشته باشیدکه این به خاطر به حداقل رساندن ریسکهای بالقوه درمراقبتهای پزشکی
است.

درآزمایشات تشعشع هسته ای که به عنوان پزشکی هسته ای شناخته می شوند،ازاشعهxاستفاده می کنند . اما « متد »استفاده از آن کاملاً با اشعه x متفاوت است و تصاویر کاملاً‌ متفاوت نسبت به تصاویر اشعه x تهیه می شود .

بکارگیری همان توصیه های قبلی در مورد مطلع نمودن پزشکی یا تکنولوژیست پزشکی هسته در مورد حاملگی یا احتمال آن بسیار مهم است.

به هر حال توصیه دیگر در پزشکی هسته ای به زنان شیرده است .بعضی از داروهایی که برای آزمونهای پزشکی هسته ای استفاده می شوند ،‌ می توانند وارد شیر مادر شده و در نتیجه نوزاد آنها را مصرف می کند . برای کم کردن این احتمال ، بهتراست مادر شیرده ، پزشک و تکنولوژیست پزشکی هسته ای را قبل از انجام آزمایش مطلع کند .ممکن است ازبیمار خواسته شود،‌ شیردهی را برای مدت کوتاهی قطع کند ، پستانهای خود را تخلیه کرده و شیر را دور بریزد . بعد از مدت زمان کوتاهی می توان شیردهی را دوباره شروع کرد .

دز تشعشعی دریافتی در آزمونهای interventional :

آزمونهای رادیولوژیک interventional نوعی تصویربرداری تشخیصی هستند که به پزشک برای درمان بیماران در شرایط خاص کمک می کند . این آزمونها اغلب نتایج پزشکی قابل قبول را با حداقل زمان بهبودی مهیا می کنند .

مثل بقیه آزمونهای پزشکی دیگر ، این آزمونها هم با ریسکهایی همراه هستند که این ریسکها بستگی به نوع آزمون دارد .

سونوگرافی:

گاهی سونوگرافی برای آزمونهای رادیولوژیکی interventional استفاده می شود . در سونوگرافی از امواج صوتی استفاده می شود که تا کنون ریسکی در این نوع آزمون با شدتهای مورد استفاده جاری ، شناسایی نشده است .

نوع دیگر آزمونهای interventional ، MRI می باشد . در این نوع آزمونها Screening خیلی دقیقی قبل از آزمون انجام می شود .

Screening به خاطر اطمینان از این است که بیمار قبلاً آزمون پزشکی دیگری نداشته و یا از مواد آرایشی که انجام آزمون را با خطر مواجه می کند استفاده نکرده است .

در آزمونهای رادیولوژیک interventional که از اشعه x استفاده می شود ، درصد خطر بستگی به نوع آزمون دارد . زیرا گاهی از تشعشع خیلی کم استفاده می شود در حالیکه در آزمونهای پیچیده تشعشع بیشتری بکارمی رود .

به طور کلی ، ریسک ایجاد کانسر در اثر اکسپوژر آنقدرها قابل توجه نیست وقتی که فوائدآزمون رادرنظر می گیریم .

در بسیاری از آ‍زمونهای پیچیده مثل


ELECTRON Beam Computed Tomography ( EBCT ) 

با اینکه ظهور دستگاه CT اسکن و عرضه انواع spiral و mutislice آن ابزار توانمندی را برای تصویربرداری از اندامهای درون بدن فراهم کرده اند ، ولی هنوز هم تصویربرداری از اندامهای متحرک مثل قلب یکی از محدودیتهای این ابزار است . هر نوع حرکتی در حین تصویربرداری باعث ایجاد آرتیفکت و ناواضحی و در نتیجه کاهش قدرت تفکیک فضایی می شود .با پیشرفت سیستم های CT زمان لازم برای اسکن کوتاهتر می شد ولی هنوز هم این زمان برای تصویربرداری از قلب به اندازه کافی کم نبود زیرا برای تصویربرداری از قلب زمانهایی در حد یک دهم ثانیه یا کمتر لازم است تا آرتیفکت های ناشی از حرکت ایجاد نشود . این محدودیت با استفاده از CT اسکن با اشعه الکترونی ( EBCT) رفع شد
. EBCT
یک سیستم CT اسکن با سرعت بسیار زیاد است که مخصوص تصویربرداری از قلب در حال ضربان طراحی شده است . BECT با عناوینی همچون CineCT ،

Fifth.generationCT CT
 ، Scanning electron beam CT و ultrafast CT نامیده می شود . - مراحل تکامل اسکنر EBCT اساس و کارکرد اسکنر EBCT برای اولین بار توسط colleagues و Douglas Boyd در سال 1979 در نتیجه تحقیقات انجام شده در دانشگاه کالیفرنیا واقع در سانفرانسیسکو در دهه هفتاد میلادی بیان گردید .

در سال 1983 شرکت Imatron اسکنر CT بسیار سریع Boyd را برای تصویربرداری از قلب و سیستم گردش خون بهبود بخشید . در آن زمان این دستگاه با نامهایی چون cardiovascular computed tomography ( CVCT ) یا CineCT شناخته می شد . امروزه این دستگاه EBCT نامیده می شود و انتظار می رود در آینده ای نزدیک تعداد بسیار بیشتری از این دستگاه ها مورد استفاده قرار گیرد . ( تا اواخر سال 2000 میلادی تعداد 25 دستگاه EBCT در امریکا و 30 دستگاه نیز در اروپا و آسیا مورد استفاده قرار گرفته اند ) توانمندی های بالقوه EBCT موجب تولید تصاویری با قدرت تفکیک بالا از اندامهای متحرک مثل قلب بدون آرتی فکت ناشی از حرکت می شود . از این اسکنر می توان برای تصویربرداری از قلب و سایر قسمتهای بدن در کودکان و بزرگسالان استفاده کرد زیرا طراحی این دستگاه امکان جمع آوری اطلاعات را ده برابر سریعتر از CT های مرسوم فراهم کرده است .
-
اصول و اجزاء EBCT طراحی سیستم EBCT با CT های مرسوم متفاوت است که این تفاوتها در زیر آورده شده است :
1-
مبنای اسکنر EBCT استفاده از فن آوری اشعه الکترونی است و در این سیستم ها تیوب اشعه x وجود ندارد .
2-
در این سیستم ها حرکات مکانیکی در اجزاء دستگاه وجود ندارد . 3
-
نحوه جمع آوری اطلاعات در EBU با CT های مرسوم متفاوت است . در انتهای دستگاه EBCT یک تفنگ الکترونی قرار دارد که یک دسته الکترونی با انرژی 130 کیلوالکترون ولت تولید می کند. این دسته الکترونی بوسیله یک کویل الکترومغناطیسی شتاب می گیرد و کانونی می شود که با یک زاویه معین منحرف می شود و به یکی از چهار حلقه هدف تنگستنی برخورد می کند . حلقه های هدف ثابت هستند و شعاع آنها cm 90 است که یک قوس 210 درجه را تشکیل می دهند . شعاع الکترونی در طول حلقه هدایت می شود که می تواند به صورت منفرد یا به صورت توالی به کار رود . در نتیجه پخش حرارت مشکلی مانند آنچه در سیستمهای CT اسکن مرسوم وجود دارد ایجاد نمی کند . وقتی که شعاع الکترونی با هدف تنگستنی برخورد می کند اشعه x تولید می شود . محدود کننده ها دسته اشعه x تولید شده را به شکل یونی در می آورند که از یون بیمار عبور می کنند . که در یک میدان اسکن 47 سانتی متر قرار دارد تا به دتکتورها به صورت یک قوس در دو ردیف کنار هم قرار گرفته اند برخورد کنند . دتکتورها در مقابل حلقه تنگستنی قرار دارند و در دو ردیف جداگانه قرار گرفته اند که شعاع آنها 5/67 سانتی متر است که تشکیل یک قوس 216 درجه را می دهند . ردیف اول شامل 864 دتکتور است که اندازه هر کدام نصف دتکتورهای حلقه دوم است که 432 دتکتور دارد . این نحوه قرارگیری دتکتورها این امکان را فراهم می کند که در زمان استفاده از یکی از حلقه های هدف اطلاعات مربوط به دو مقطع جمع آوری شود وقتی به طور متوالی از هر چهار حلقه استفاده می شود می توان اطلاعات مربوط به هشت مقطع را جمع آوری کرد . دتکتورها از مواد جامد که شامل کریستالهای لومینسانت و کادمیوم تنگستن هستند تشکیل شده اند ( که اشعه x را به نور تبدیل می کنند ) این قسمت به یک سلیکونی چسبیده است که نور را به جریان تبدیل می کندکه خود این قسمت نیز به یک پیش تقویت کننده متصل است . خروجی دتکتورها به سیستم جمع آوری اطلاعات data acquisition system ( DAS ) فرستاده میشود .

گداخت هسته‌ای

انرژی هسته‌ایِ ”پاک“

گداخت هسته‌ای که (همجوشی یا جوش‌هسته‌ای نیز نامیده می‌شود) در واقع تولید انرژی است به شیوه‌ای که در کرة خورشید انجام می‌گیرد. این اندیشه ممکن است جنون‌آمیز به نظر آید، اما عملی و امکان‌پذیر است؛ یا تقریباً امکان‌پذیر است. برای فهم بهتر مسئله بیایید به قلب یک ستاره نگاه کنیم در آنجا چه می‌بینیم؟ می‌بینیم که هسته‌های اتمها در قلب ستاره، درهم ادغام می‌شوند و هسته‌های بزرگتری را تشکیل می‌دهند. این واکنشی که ”گداخت“ یا همجوشی هسته‌ای نامیده می‌شود، همواره با انتشار مقدار عظیمی از گرما و نور همراه است. اگر بتوانیم این واکنش را که در خورشید و ستارگان دیگر به طور عادی انجام‌ می‌گیرد در کرة‌زمین ایجاد و کنترل کنیم، خواهیم توانست به مقدار عظیمی از انرژی دست یابیم. مشکل اینجاست که نیرویی به نام ”الکترومغناطیس“ وجود دارد که اتمها را از هم دور می‌کند، مانند دو آهنربا که بخواهند قطب شمال یا قطب جنوب‌شان را به هم بچسبانند.

 

تا سال 2050 باید منتظر بمانیم

برای آن که اتمها را وادار کنیم که بر نیروی الکترومغناطیس غلبه کنند و درهم ادغام شوند، باید دو شرط لازم را، که در ستارگان به طور طبیعی وجود دارند، در کرة‌زمین پدید آوریم: تجمع حداکثر اتمها در کوچکترین حجمِ ممکن و ایجاد دمایی به میزان 50 میلیون درجة سانتی‌گراد! چرا چنین دمایی لازم است؟ چون هر چه دمای یک گاز بالاتر باشد، سرعت عناصر متشکلة آن بیشتر خواهد شد، و بنابراین امکان برخورد این عناصر نیز بیشتر و در نتیجه امکان همجوشی و ادغام نیز افزایش خواهد یافت.

نخستین شرط لازم، با به دام انداختن اتمها در یک آهنربای عظیم، به شکل سیب توخالی، تحقق می‌یابد. (البته از این اتمها یک الکترون برداشته شده است تا باردار شوند.) [شکل زیر] برای تحقق شرط لازم دوم، باید هم چیز را در یک ”اجاق دارای میکروموج“ بپزیم. دانشمندان به همجوشی دوتریوم و تریتیوم (دو گونة هیدروژن) در تأسیساتی که توکاماک (Tokamak) نام دارند، موفق شده‌اند، اما این همجوشی مدت بسیار کوتاهی دوام داشته، و انرژی‌ای که برای انجام واکنش مصرف‌‌شده، بیش از انرژی به دست آمده بوده است.

بنابراین تولید انرژی از راه همجوشی هسته‌ای فعلاً نه سودآور است، و نه چندان جاافتاده و عملی است. در واقع پیش از سال 2050 در تولید الکتریسیته از این طریق توفیق نخواهیم یافت.

اما با وجود همة مشکلات، عده‌ای از دانشمندان به امکان‌پذیر بودن تولید انرژی از طریق همجوشی هسته‌ای باور دارند. اگر آنان روزی موفق به مهار این انرژی شوند، می‌توان گفت که بشر راه‌حلی پایدار، مطمئن و نسبتاً پاک برای تولید انرژی پایان‌ناپذیر یافته است. می‌گوییم: پایان‌ناپذیر، چون دو اتم دتریوم و تریتیوم به سادگی و با استفاده از آب تولید می‌شوند؛ مطمئن، چون همجوشی هسته‌ای، برخلاف شکافت هسته‌ای، واکنشی است که می‌توان آن را به سهولت‌ متوقف و مهار کرد: کافی است که شیر لوله‌های دتریوم و تریتیوم را ببندیم؛ و می‌گوییم: و انرژی نسبتاً پاک، چون هلیوی که در این واکنش تولید می‌شود رادیواکتیو نیست و رادیواکتیویتة نوترون آزاد شده نیز ظرف پنجاه سال کاهش می‌یابد: پس با گرفتاری خاص شکافت هسته‌ای و نیروگاه‌های هسته‌ای مرسوم و معمول مواجه نخواهیم شد که نمی‌دانیم با پسماندهای رادیواکتیو آنها تا میلیونها سال بعد، چه باید بکنیم.

 

 

 

در قلب ”توکاماک“

همجوشی دتریوم و تریتیوم با آزاد شدن مقدار عظیمی گرما همراه است. این گرما از طریق مدار اولیه بازیابی می‌شود و به مدار ثانویه انتقال می‌یابد. سرانجام بخار تولید‌شده در مدار ثانویه است که توربین را به کار می‌اندازد.

 

 

دتریوم و تریتیوم در دمای بسیار بالا با هم برخورد می‌کنند. هسته‌های دو اتم در هم می‌جوشند یا ادغام می‌شوند، تا یک هستة هلیوم پدید آورند. یک نوترون و نیز مقدار بسیار زیادی انرژی هم آزاد می‌شود

تاریخ ارسال: یکشنبه 24 آبان‌ماه سال 1388 ساعت 17:56 | نویسنده: روزگار نامرد | چاپ مطلب 0 نظر
دستگاه تصفیه آب خانگی با قابلیت تصفیه 1000 لیتر آب دستگاه تصفیه آب خانگی با قابلیت تصفیه 1000 لیتر آب دستگاه تصفیه آب خانگی با قابلیت تصفیه 1000 لیتر آب دستگاه تصفیه آب خانگی با قابلیت تصفیه 1000 لیتر آب دماسنج عشق شوز آندر Shoes Under (شوز اندر جا کفشی 12 تایی ) شوز آندر Shoes Under (شوز اندر جا کفشی 12 تایی ) شوز آندر Shoes Under (شوز اندر جا کفشی 12 تایی ) شوز آندر Shoes Under (شوز اندر جا کفشی 12 تایی ) دستبند مغناطیسی پاور بالانس دستبند مغناطیسی پاور بالانس دستبند مغناطیسی پاور بالانس ست مروارید عشق کامل ست مروارید عشق کامل ماساژور یو اس بی دسته دار 3 سر طرح شاندر من Usb Massagor ماساژور یو اس بی دسته دار 3 سر طرح شاندر من Usb Massagor ماساژور یو اس بی دسته دار 3 سر طرح شاندر من Usb Massagor خرید اینترنتی لیزر پوینتر با نور سبز رنگ با برد 7 کیلومتر خرید اینترنتی لیزر پوینتر با نور سبز رنگ با برد 7 کیلومتر خرید اینترنتی لیزر پوینتر با نور سبز رنگ با برد 7 کیلومتر بیگودی مجیک MAGIC LEVERAG بیگودی مجیک MAGIC LEVERAG بیگودی مجیک MAGIC LEVERAG دستگیره نگهدارنده کیسه خرید دستگیره نگهدارنده کیسه خرید دستگیره نگهدارنده کیسه خرید ترک سیگار (الکترو اسموک) ترک سیگار (الکترو اسموک) خرید گیرنده دیجیتال تلویزیون بر روی انواع کامپیوتر و لپ تاپ DVB-Tخرید گیرنده دیجیتال تلویزیون بر روی انواع کامپیوتر و لپ تاپ DVB-T

ابزار وبلاگ