همه چیز در مورد انرژی هسته ای

فیزیک هسته ای چیست؟ ذوالفقار دانشی جدول تناوبی عناصر درون هر اتم می‌توان سه ذره ریز پیدا کرد: پروتون، نوترون و الکترون. پروتونها در کنار هم قرار می‌گیرند و هسته اتم را تشکیل می‌دهند، در حالی که الکترونها به دور هسته می‌چرخند. پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب می‌کنند، پروتون و الکترون هم یکدیگر را جذب می‌کنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته می‌گردد. در اغلب حالت‌ها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است. نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.می دانیم که ذرات با بار یکسان یکدیگر را دفع می‌کنند .در نتیجه وظیفه نوترونها این است که با فراهم آوردن شرایط بهتر، پروتونها را کنار هم نگاه دارند. ( این کار توسط نیروی هسته ای قوی صورت می‌گیرد ) تعداد پروتونهای هسته نوع اتم را مشخص می‌کند. برای مثال اگر 13 پروتون و 14 نوترون، یک هسته را تشکیل دهند و 13 الکترون هم به دور آن بچرخند، یک اتم آلومینیوم خواهید داشت و اگر یک میلیون میلیارد میلیارد اتم آلومینیوم را در کنار هم قرار دهید، آنگاه نزدیک به پنجاه گرم آلومینیوم خواهید داشت! همه آلومینیوم هایی که در طبیعت یافت می‌شوند، AL27 یا آلومینیوم 27 نامیده می‌شوند. عدد 27 نشان دهنده جرم اتمی است که مجموع تعداد پروتونها و نوترونهای هسته را نشان می‌دهد. اگر یک اتم آلومینیوم را درون یک بطری قرار دهید و میلیونها سال بعد برگردید، باز هم همان اتم آلومینیوم را خواهید یافت. بنابراین آلومینیوم 27 یک اتم پایدار نامیده می‌شود. بسیاری از اتمها در شکل های مختلفی وجود دارند. مثلاً مس دو شکل دارد: مس 63 که 70 درصد کل مس موجود در طبیعت است و مس 65 که 30 درصد بقیه را تشکیل می‌دهد. شکل های مختلف اتم، ایزوتوپ نامیده می‌شوند. هر دو اتم مس 63 و مس 65 دارای 29 پروتون هستند، ولی مس 63 دارای 34 نوترون و مس 65 دارای 36 نوترون است. هر دو ایزوتوپ خصوصیات یکسانی دارند و هر دو هم پایدارند. اتمهای ناپایدار تا اوایل قرن بیستم، تصور می‌شد تمامی اتم‌ها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است. رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع می‌کند. هیدورژن مثال خوبی از عنصری است که ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است. هیدروژن طبیعی ( همان هیدروژنی که ما می‌شناسیم) در هسته خود دارای یک پروتون است و هیچ نوترونی ندارد. ( البته چون فقط یک پروتون درهسته وجود دارد نیازی به نوترون نیست ) ایزوتوپ دیگر هیدروژن، هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است. دوتریوم، فقط 015/0 درصد کل هیدروژن را تشکیل می‌دهد و در طبیعت بسیار کمیاب است، با این حال مانند هیدورژن طبیعی رفتار می‌کند. البته از یک جهت با آن تفاوت دارد و آن، سمی بودن دوتریوم در غلظت های بالاست. دوتریوم هم ایزوتوپ پایداری است، ولی ایزوتوپ بعدی که تریتیوم خوانده می‌شود، ناپایدار است. تریتیوم که هیدروژن 3 نیز خوانده می‌شود، در هسته خود یک پروتون و دو نوترون دارد و طی یک واپاشی رادیواکتیو به هلیوم 3 تبدیل می‌شود. این بدان معنی است که اگر ظرفی پر از تریتیوم داشته باشید و آن را بگذارید و یک میلیون سال بعد برگردید، ظرف شما پر از هلیوم 3 است. هلیوم 3 از 2 پروتون و یک نوترون ساخته شده وعنصری پایدار است ). در برخی عناصر مشخص، به طور طبیعی همه ایزوتوپ‌ها رادیواکتیو هستند. اورانیوم بهترین مثال برای چنین عناصری است که علاوه بر رادیواکتیویته زیاد سنگین ترین عنصر رادیواکتیو هم هست که به طور طبیعی یافت می‌شود. علاوه بر آن، هشت عنصر رادیواکتیو طبیعی هم وجود دارند که عبارتند از پولوتونیوم، استاتین، رادون، فرانسیم، رادیوم، اکتینیوم، توریم و پروتاکتسینانیوم. عناصر سنگین تر از اورانیوم که به دست بشر در آزمایشگاه ساخته شده اند، همگی رادیواکتیو هستند. واپاشی رادیو اکتیو وحشت نکنید بر خلاف اسمش این فرایند بسیار ساده است! اتم یک ایزوتوپ رادیواکتیو طی یک واکنش خودبخودی به یک عنصر دیگر تبدیل می‌شود. این واپاشی معمولاً از سه راه زیر انجام می‌شود: 1- واپاشی آلفا 2- واپاشی بتا 3- شکافت خودبه خودی توضیح تفاوت این سه راه کمی مشکل است اما بدون اینکه بدانید این سه راه چه فرقی با هم می‌کنند هم می‌توانید از ادامه مطلب سر در آورید!! اگر خیلی هم علاقمندید بدانید اینجا را کلیک کنید. در این فرآیندها چهار نوع تابش رادیواکتیو مختلف تولید می‌شود: 1- پرتو آلفا 2- پرتو بتا 3- پرتو گاما 4- پرتوهای نوترون باز هم برای اینکه بدانید چگونه ، اینجا را بخوانید! تابش های طبیعی خطرناک درست است که واپاشی رادیواکتیو، یک فرآیند طبیعی است و عناصر رادیواکتیو هم بخشی از طبیعت هستند، ولی این تابش های رادیواکتیو برای موجودات زنده زیان بار هستند. ذرات پر انرژی آلفا، بتا، نوترونها، پرتوهای گاما و پرتوهای کیهانی، همگی به تابش های یون ساز معروفند، بدین معنی که بر همکنش آنها با اتم‌ها منجر به جداسازی الکترون‌ها از لایه ظرفیتشان می‌شود. از دست دادن الکترونها، مشکلات زیادی از جمله مرگ سلول‌ها و جهش های ژنتیکی را برای موجودات زنده به دنبال دارد. جالب است بدانید جهش ژنتیکی عامل بروز سرطان است. درات آلفا، اندازه بزرگتری دارند و از این رو توانایی نفوذ زیادی در مواد ندارند، مثلاً حتی نمی توانند از یک ورق کاغذ عبور کنند. از این رو تا زمانی که در خارج بدن هستند تأثیری روی افراد ندارند. ولی اگر مواد غذایی آلوده به مواد تابنده ذرات آلفا بخورید، این ذرات می‌توانند آسیب مختصری درون بدن ایجاد کنند. ذرات بتا توانایی نفوذ بیشتری دارند که البته آن هم خیلی زیاد نیست، ولی در صورت خورده شدن خطر بسیار بیشتری دارند. ذرات بتا را می‌توان با یک ورقه فویل آلومینویم یا پلکسی گلاس متوقف کرد. پرتوهای گاما همانند اشعه X فقط با لایه های ضخیم سربی متوقف می‌شوند. نوترونها هم به دلیلی بی یار بودن، قدرت نفوذ بسیار بالایی دارند و فقط با لایه های بسیار ضخیم بتن یا مایعاتی چون آب و نفت متوقف می‌شوند. پرتوهای گاما و پرتوهای نوترون به دلیل همین قدرت نفوذ بالا می‌توانند اثرات بسیار وخیمی بر سلول های موجودات زنده بگذارند، تأثیراتی که گاه تا چند نسل ادامه خواهد داشت. پس چه کار می‌شود کرد؟ با توجه به همه چیزهایی که گفتیم ، کنترل و استفاده درست از انرژی هسته ای بیشترین اهمیت را دارد. باید بدانیم چه کارهایی از این انرژی بر می‌آید و چه کارهایی فقط در تصورات ماست تا با آگاهی بیشتر از آن استفاده کنیم. خوب اولخوبهایش را بگوییم یا بدهایش را ؟ مصارف صلح آمیز انرژی هسته ای کاربردهای دیگر فیزیک هسته ای 1- برای کشف مطلبی اگر احتیاج به تجزیه و تحلیل موادی باشد که هیچ گونه امکان کنترلی روی آن نیست چه کاری می‌توان انجام داد؟ مثلاً اگر بخواهیم مقداری خاک کفش مشخص مظنونی یا موی سر یک انسان و یا نفت خام یک کشتی را که مقداری از کالای خود را بطور غیر قانونی در جای دیگر فروخته است تجزیه و تحلیل نمایید، چه کاری می‌توانیم بکنیم؟ البته می‌توان از روش شیمیایی استفاده کرد؛ اما روش سریع و مطمئن تری هم وجود دارد. نمونه ای از ماده ای را که نیاز به تجزیه دارد برداشته و آن را با ایزوتوپ رادیواکتیو مخلوط می‌کنیم، نمونه رادیواکتیو شده را در یک راکتور تحقیقاتی به وسیله نوترون بمباران می‌کنیم. با جذب نوترون نمونه پایدار شده و اتم های جسم مورد آزمایش نیز رادیواکتیو می‌شوند و تابش می‌کنند. مقدار تابش برای هر عنصر متفاوت است. بنابراین اگر ده عنصر مختلف در نمونه داشته باشیم، ده نوع تابش مختلف نیز خواهیم داشت. از روی این تابش‌ها می‌توان نوع و میزان عناصر تشکیل دهنده نمونه را مشخص کرد. از این روش می‌توان برای ردیابی آلودگی هوا و هم چنین آلودگی دریا توسط نفت کش‌ها استفاده کرد. با آزمایش 40 نوع نفت مختلف که در نقاط مختلف جهان استخراج می‌شوند دانشمندان به این نتیجه رسیدند که در تمام مواد نفتی هفت نوع عنصر مشترک وجود دارد. اما مقدار آنها در نفتی که در یک نقطه استخراج می‌شود با نفت نقطه دیگر دنیا متفاوت است. هنگامی که مواد نفتی در جایی مشاهده می‌شوند نمونه ای از آن به آزمایشگاه برده شده و در معرض تابش نوترونی قرار می‌گیرد و به این ترتیب عناصر مختلف آن و مقدار آنها مشخص می‌شود. و می‌توان به طور دقیق اعلام کرد که کدام کشتی مسئول آلوده سازی بوده است. یک روش ساده و سریع، برای تجزیه هوای آلوده نیز وجود دارد. ابتدا وسیله صافی هایی آلودگی هوا گرفته می‌شود. و سپس به وسیله همان روشی که در بالا توضیح داده شده نوع و مقدار عناصر زیان آور موجود درا آن مشخص می‌شود. با تهیه نقشه های برای آلودگی هوا مشابه نقشه های تغییرات جوی، می‌توان پیش گویی هایی در مورد آلودگی هوا انجام داد و اقدامات لازم را در رابطه با پاکیزه نگه داشتن هوا انجام داد. 2- یکی دیگر از کاربردهای تابش های هسته ای تصویر برداری است. همانطور که می‌دانید برای تصویر برداری از اجسام تیره ( کدر ) مثل بدن انسان از اشعه ایکس استفاده می‌شود. حالا اگر از اشعه ای پرانرژی تر از اشعه X استفاده کنیم، قابلیت نفوذ در عمق بیشتری را دارد و به این ترتیب از اجسام ضخیم تر نیز می‌توان عکس برداری کرد. اشعه گاما خیلی از اشعه X قوی تر است و می‌تواند در فلزات و اجسام تیره به قطر چند اینچ نفوذ کند و این امکان را برای مهندسین فراهم کند تا داخل ماشین آلات را ببینند. 3- ردیابی ایزوتوپ رادیواکتیو را تقریباً در تمام مراحل تأسیسات صنعتی پتروشیمی می‌توان مشاهده نمود. هنگام کشف و استخراج نفت، دانشمندان میله های رادیواکتیو را داخل چاههای آزمایشی فرو برده، سپس میزان انتشار تشعشع رادیواکتیو را در طبقات مختلف اندازه می‌گیرند زمین شناسان میزان بازتاب اشعه رادیواکتیو را ثبت نموده و یک تصویر واضح و دقیق از طبقات زیرین جهت حفاری بیشتر برای رسیدن به نفت در آن منطقه یا متوقف کردن کار به دست می‌آورند، در تأسیسات تصفیه و پالایش از ردیابی های ایزوتوپ های رادیواکتیو جهت دنبال کردن مواد پتروشیمی و آماده سازی آنها در قسمتهای مختلف استفاده می‌شود. در مرحله نهایی محصولات مواد نفتی تصفیه شده جهت تعیین درجه خالص بودن آنها با استفاده از ایزوتوپهای رادیواکتیو آزمایش می‌شوند در هنگام انتقال مواد نفتی در فاصله های زیاد، چون شرکتهای مختلف نفتی از لوله های نفت مشترک استفاده می‌کنند ردیابی ایزوتوپی مختلف جهت علامت گذاری ابتدای انتقال هر محموله نفتی به کار برده می‌شوند. سلاح های هسته ای مرضیه رستمی امروز، تمایز دادن این دو نوع سلاح بسیار دشوار است؛ زیرا در سلاح های پیچیده ای که امروزه ساخته می‌شود هر دو نوع بمب با هم ترکیب شده اند. مثلاً ابتدا یک بمب شکافت کوچک منفجر می‌شود تا دما و فشار مورد نیاز واکنش هم جوشی و انفجار بمب هم جوشی فراهم شود. عناصر هم جوشی هم ممکن است در هسته یک بمب شکافت استفاده شوند، چون نوترونهایی که از آنها تولید می‌شود باز می‌آفریند شکافت را بالا می‌برد. وجه تمایز سلاح های شکافت و هم جوشی در این است که انرژی آنها از تغییرات هسته اتم به دست می‌آید. پس بهترین نام برای تمامی این سلاح های انفجاری، سلاح هسته ای یا Nuclear Weapon است. نوع دیگری از استفاده از سلاحهای اتمی هم وجود دارد که به آن بمب کثیف می‌گویند. بمب های شکافت (Fission Bomb) ساده ترین بمب های هسته ای بمب های شکافت خالص هستند که اساس سلاح های پیشرفته امروزی را تشکیل می‌دهند. اولین بار این بمب در آزمایش ترینتیی که نخستین دستاوردهای علمی پروژه، منهتن بود، منفجر شد. یک بمب هسته ای شکافت، با تبدیل مداوم یک جرم زیر بحرانی یک ماده قابل شکافت به یک مجموعه فوق بحرانی و ایجاد یک واکنش زنجیره ای همراه با تولید مقداربسیار زیاد انرژی کار می‌کند. در عمل جرم به طور پیوسته و آرام و آرام به حالت بحرانی نمی رسد، بلکه از یک حالت زیر بحرانی به یک حالت بسیار فوق بحرانی تبدیل می‌شود. بدین ترتیب هر نوترون، نوترونهای جدید و زیادی تولید می‌کند و واکنش زنجیرهای با سرعت بسیار زیادی پیش می‌رود. مشکل اصلی در تولید یک بمب هسته ای شکافت بازده انفجاری خوب، این است که بتوان برای مدت کافی، اجزای بمب را کنار هم نگاه داشت تا بخش قابل توجهی از انرژی هسته ای قابل تولید آزاد شود. تا پیش از زمان رها کردن بمب، ماده قابل شکافت را باید به صورت قطعات متعدد و جدا از هم که هر یک کمتر از جرم بحرانی هستند، نگاهداری کرد. در زمان انفجار، باید مواد قابل شکافت را به سرعت در کنار هم قرار داد. در ضمن فرآیند جمع شدن مواد، واکنش زنجیره ای آغاز می‌شود و سبب می‌شود اجزای بمب گرم شده، منبسط شوند. این انبساط مانع از فشرده شدن حداکثر مواد می‌شود ( به صرفه ترین حالت تولید انرژی در فشردگی کامل مواد قابل شکافت روی می‌دهند. ) اما فراهم کردن سیستمی که تمام این کارها را به خوبی انجام دهد اصلاً کار ساده ای نیست. برای انفجار بمب باید چه کار کرد؟ الف - قطعات فرو بحرانی ماده هسته ای باید به هم متصل شوند تا یک جرم فرا بحرانی را تشکیل دهند. این جرم فرا بحرانی به هنگام آغاز واکنش، بیشتر از حد نیاز نوترون تولید می‌کند و ادامه یک واکنش زنجیره ای را تضمین می‌کند. ب - تا آنجا که ممکن است، ماده بیشتری قبل از انفجار بمب شکافته شود تا از سوخته شدن بمب جلوگیری شود. سوخته شدن، زمانی است که بمب خوب عمل نکند و مواد قابل شکافت اندکی دچار شکافت هسته ای شوند. برای تبدیل سوخت هسته ای از حالت فرو بحرانی به حالت فرا بحرانی، معمولاً از دو روش استفاده می‌شود. روش نخست، کنار هم قرار دادن جرمهای فرو بحرانی در کنار هم و تشکیل یک جرم فرو بحرانی است. روش دوم، فشرده کردن یک جرم فرو بحرانی و رساندن آن به جرم فرا بحرانی است. نوترونها را یک مولد نوترون تولید می‌کند. این مولد، یک ساچمه کوچک از جنس پولونیوم و بریلیوم است که درون یک ورقه فلزی واقع شده است. ساچمه و پوشش فلزی اش درون هسته سوخت هسته ای بمب قرار می‌گیرد و بدین شکل عمل می‌کند: 1- هنگامی که دو جرم فرو بحرانی به هم متصل می‌شوند، پوشش فلزی ساچمه می‌شکند و پولونیوم بلافاصله ذرات آلفا ساطع می‌کند. 2- این ذرات آلفا بریلیوم 9 ( Br9 ) برخورد می‌کنند و در نتیجه بریلیوم 8 ( Br8 ) و چند نوترون آزاد می‌شود. 3- این نوترونهای آزاد به هسته های سوخت اتمی برخورد می‌کنند و شکافت هسته ای را آغاز می‌کنند. در نهایت، واکنش شکافت درون یک پوشش فلزی چگال که بازتابنده نام دارد، گسترش می‌یابد. بازتابنده معمولاً از U-238 ساخته می‌شود. ادامه واکنش شکافت، سبب می‌شود بازتابنده گرم شود و انبساط پیدا کند. انبساط بازتابنده، فشاری را در جهت عکس به هسته واکنش وارد می‌کند و گسترش هسته را کندتر می‌کند. بازتابنده هم چنین نوترونهای پر انرژی را به درون هسته شکافت منعکس می‌کند و بازده فرآیند شکافت هسته ای را افزایش می‌دهد. بمب شکافت به مکانیسم تفنگی ساده ترین راه برای رساندن دو جرم فرو بحرانی به یکدیگر، این است که تفگی بسازیم و یکی از این جرمها را به سمت دیگری شلیک کنیم. جرم بحرانی U-235 به صورت یک کره به دور مولد نوترون ساخته می‌شود، ولی مقداری از آن به صورت یک گلوله کوچک جدا می‌شود. گلوله در انتهای یک لوله بلند قرار می‌گیرد و کره اورانیومی در انتهای دیگر لوله قرار می‌گیرد. مقدار دقیقی مانده منفجره هم پشت گلوله قرار می‌گیرد. هنگامی که حسگر فشار سنج با رومتری با ارتفاع مناسب انفجار بمب منطبق شد، مراحل زیر به ترتیب اتفاق می‌افتد: 1- چاشنی ماده منفجره عمل می‌کند و انفجاری دقیق، گلوله را به انتهای لوله پرتاب می‌کند. 2- گلوله به کره اورانیومی و مولد نوترون برخورد می‌کند و طبق روندی که قبلاً اشاره شد، واکنش شکافت آغاز می‌شود. 3- واکنش های شکافت هسته ای گسترش می‌یابند. 4- بمب منفجر می‌شود. پسر کوچولو ( Little Boy )، بمبی که روی شهر هیروشیما منفجر شد، از همین نوع بمب بود و با همین مکانیسم عمل کرد. قدرت انفجاری آن معادل 5/14 کیلوتن تی ان تی بود و بازدهش حدود 5/1 درصد. یعنی قبل از آنکه بمب منفجر شود و اجزای بمب در فضا پخش شوند، 5/1 درصد سوخت بمب دچار شکافت هسته ای شده بود و انرژی حاصل از آن، معادل انفجار 14500 تن یا 5/14 میلیون کیلوگرم تی ان تی بود. بمب شکافت با مکانیسم انفجاری در اوایل پروژه، منهتن ( برنامه فوق سری ایالات متحده در جنگ جهانی دوم برای تولید بمب هسته ای )، دانمشندان هسته ای فهمیدند فشرده کردن جرمهای فرو بحرانی توسط انفجارهای داخلی و متمرکز کردن آنها در یک کره کوچک، روش خوبی برای فرابحرانی کرن آن جرم است. البته مشکلات زیادی در این راه وجود داشت، مثلاً این که چگونه ضربه انفجار را کنترل کرد و به طور یکنواخت روی سطح یک کره پخش کرد. مشکل بدین شکل حل شد: ابزار انفجاری، کره ای با جنس اورانیوم 235 به عنوان بازتابنده و یک هسته از جنس پلوتونیوم 239 بود که بین آنها را مواد منفجره بسیار قوی پر کرده بود. وقتی بمب‌ها رها می‌شود و به لحظه انفجار می‌رسد، این اتفاق‌ها به ترتیب روی می‌دهد: 1- مواد منفجره عمل می‌کنند و یک موج ضربه ای ایجاد می‌شود. 2- موج ضربه ای هست را فشرده می‌کند. 3- واکنش شکافت آغاز می‌شود. 4- بمب منفجر می‌شود. مرد چاق ( Fat man)، بمبمی که برفراز شهر ناکازاکی منفجر شد، از این نوع بمب های انفجاری بود که قدرتش معادل انفجار 23 کیلوتن تی ان تی و بازدهش 17 درصد بود. بمب های مکانیسم انفجاری جدید بعدها بمب های انفجاری به طراحی های بهتری رسیدند که بازده آنها را به شدت افزایش می‌داد. نمونه ای از کار آنها به این قرار است: 1- ماده منفجره عمل می‌کند و موج ضربه ای پدید می‌آورد. 2- موج ضربه ای، قطعات پلوتونیوم را به درون یک کره کوچک هدایت می‌کند. 3- قطعات پلوتونیوم در مرکز آن کره کوچک به یک ساچمه بریلیوم - پولونیوم برخورد کرده، پوشش آن را می‌شکنند. 4- واکنش شکافت آغاز می‌شود و به سرعت گستش می‌یابد. 5- بمب منفجر می‌شود. امروز تغییرات زیادی در مورد شکل بمب ایجاد شده است. در گذشته ابزارهای انفجاری کروی شکل بودند، ولی امروزه توصیه می‌شود شکل آنها به بیضی گون، همانند لیمو، نزدیک باشد. مقایسه دو مکانیسم تفنگی و انفجاری 1- بازده روش انفجاری بیشتر است، زیرا در روش انفجاری نه تنها جرمهای فرو بحرانی با هم ترکیب می‌شوند، بلکه چگالی پلوتونیوم هم افزایش می‌یابد. افزایش چگالی پلوتونیوم، افزایش چگالی نوترونهای آزاد شده را نیز به همراه خواهد داشت. 2- مکانیسم تفنگی فقط با اورانیوم 235 قابل ساخت است، در حالی که مکانیسم انفجاری از هر دو این مواد استفاده می‌کند. 3- خطرات سلاح تفنگی بیشتر است. در سلاح انفجاری، مقدار پلوتونیوم کمتر از حد بحرانی است و هیچ اتفاقی تصادفی نمی تواند موجب آغاز واکنش شکافت شود. ولی مثلا فرض کنید بمب اشتباهی به آب بیفتد و آسیب ببیند. آب دریا به عنوان کند کننده عمل می‌کند و بمب تفنگی منفجر می‌شود. 4- در حالت عادی، کره پلوتونیومی درون سلاح های انفجاری نیست و فقط هنگام مسلح شدن به درون آن فرستاده می‌شود. بنابراین در صورت هر گونه آتش سوزی یا خطرات احتمالی، انفجار هسته ای روی نمی دهد. در برخی انواع دیگر، فضایی خالی که پلوتونیوم در آنجا فوق بحرانی می‌شود با کره ای سخت پر شده که در صورت بروز اتفاق، مانع از فشرده شدن پلوتونیوم می‌شود. به هنگام مسلح شدن بمب، این کره سخت خارج می‌شود. طراحی بمب های هسته ای انرژی هسته‌ای به 2 روش تولید می‌شود: 1- شکافت هسته‌ای: در این روش هسته یک اتم توسط یک نوترون به دو بخش کوچکتر تقسیم می‌شود. در این روش غالباً از عنصر اورانیوم استفاده می‌شود. 2- گداخت هسته‌ای: در این روش که در سطح خورشید هم اجرا می‌شود، معمولاً هیدروژن‌ها با برخورد به یکدیگر تبدیل به هلیوم می‌شوند و در این تبدیل، انرژی بسیار زیادی بصورت نور و گرما تولید می‌شود. طراحی بمب‌های هسته‌ای: برای تولید بمب هسته‌ای، به یک سوخت شکافت‌پذیر یا گداخت‌پذیر، یک وسیله راه‌انداز و روشی که اجازه دهد تا قبل از اینکه بمب خاموش شود، کل سوخت شکافته یا گداخته شود نیاز است. بمب‌های اولیه با روش شکافت هسته‌ای و بمب‌های قویتر بعدی با روش گداخت هسته‌ای تولید شدند. ما در این بخش دو نمونه از بمب های ساخته شده را بررسی می کنیم: بمب‌ شکافت هسته‌ای : 1- بمب‌ هسته‌ای (پسر کوچک) که روی شهر هیروشیما و در سال 1945 منفجر شد. 2- بمب هسته‌ای (مرد چاق) که روی شهر ناکازاکی و در سال 1945 منفجر شد. بمب گداخت هسته‌ای : 1- بمب گداخت هسته‌ای که در ایسلند بصورت آزمایشی در سال 1952 منفجر شد. بمب‌های شکافت هسته‌ای از یک عنصر شبیه اورانیوم 235 برای انفجار هسته‌ای استفاده می‌کنند. این عنصر از معدود عناصری است که جهت ایجاد انرژی بمب هسته‌ای استفاده می‌شود. این عنصر خاصیت جالبی دارد: هرگاه یک نوترون آزاد با هسته این عنصر برخورد کند ، هسته به سرعت نوترون را جذب می‌کند و اتم به سرعت متلاشی می‌شود. نوترون‌های آزاد شده از متلاشی شدن اتم ، هسته‌های دیگر را متلاشی می‌کنند--Vahid.hvmit871 ‏۳۱ دسامبر ۲۰۰۸، ساعت ۱۹:۳۵ (UTC) در طراحی بمب‌های شکافت هسته‌ای، اغلب از دو شیوه استفاده می‌شود: روش رها کردن گلوله: در این روش یک گلوله حاوی اورانیوم 235 بالای یک گوی حاوی اورانیوم (حول دستگاه مولد نوترون) قرار دارد. هنگامی که این بمب به زمین اصابت می‌کند، رویدادهای زیر اتفاق می‌افتد: 1- مواد منفجره پشت گلوله منفجر می‌شوند و گلوله به پائین می‌افتد. 2- گلوله به کره برخورد می‌کند و واکنش شکافت هسته‌ای رخ می‌دهد. 3- بمب منفجر می‌شود. در بمب هیروشیما از این روش استفاده شده بود. نحوه انفجار این بمب در شکل زیر نمایش داده شده است: روش انفجار از داخل: در این روش که انفجار در داخل گوی صورت می‌گیرد، پلونیم 239 قابل انفجار توسط یک گوی حاوی اورانیوم 238 احاطه شده است. هنگامی که مواد منفجره داخلی آتش گرفت رویدادهای زیر اتفاق می‌افتد: 1- مواد منفجره روشن می‌شوند و یک موج ضربه‌ای ایجاد می‌کنند. 2- موج ضربه‌ای، پلوتونیم را به داخل کره می‌فرستد. 3- هسته مرکزی منفجر می‌شود و واکنش شکافت هسته‌ای رخ می‌دهد. 4- بمب منفجر می‌شود. بمبی که در ناکازاکی منفجر شد، از این شیوه استفاده کرده بود. نحوه انفجار این بمب، در شکل زیر نمایش داده شده است. بمب‌ گداخت هسته‌ای: بمب‌های شکافت هسته‌ای، چندان قوی نبودند! بمب‌های گداخت هسته‌ای ، بمب های حرارتی هم نامیده می‌شوند و در ضمن بازدهی و قدرت تخریب بیشتری هم دارند. دوتریوم و تریتیوم که سوخت این نوع بمب به شمار می‌روند، هردو به شکل گاز هستند و بنابراین امکان ذخیره‌سازی آنها مشکل است. این عناصر باید در دمای بالا، تحت فشار زیاد قرار گیرند تا عمل همجوشی هسته‌ای در آنها صورت بگیرد. در این شیوه ایجاد یک انفجار شکافت هسته‌ای در داخل، حرارت و فشار زیادی تولید می‌کند و انفجار گداخت هسته‌ای شکل می‌گیرد.در طراحی بمبی که در ایسلند بصورت آزمایشی منفجر شد، از این شیوه استفاده شده بود. در شکل زیر نحوه انفجار نمایش داده شده است. --Vahid.hvmit871 ‏۳۱ دسامبر ۲۰۰۸، ساعت ۱۹:۴۸ (UTC) اثر بمب‌های هسته‌ای: انفجار یک بمب هسته‌ای روی یک شهر پرجمعیت خسارات وسیعی به بار می آورد . درجه خسارت به فاصله از مرکز انفجار بمب که کانون انفجار نامیده می‌شود بستگی دارد. زیانهای ناشی از انفجار بمب هسته‌ای عبارتند از : - موج شدید گرما که همه چیز را می‌سوزاند. - فشار موج ضربه‌ای که ساختمان‌ها و تاسیسات را کاملاً تخریب می‌کند. - تشعشعات رادیواکتیویته که باعث سرطان می‌شود. - بارش رادیواکتیو (ابری از ذرات رادیواکتیو که بصورت غبار و توده سنگ‌های متراکم به زمین برمی‌گردد) درکانون زلزله، همه‌چیز تحت دمای 300 میلیون درجه سانتی‌گراد تبخیر می‌شود! در خارج از کانون زلزله، اغلب تلفات به خاطر سوزش ایجادشده توسط گرماست و بخاطر فشار حاصل از موج انفجار ساختمانها و تاسیسات خراب می‌شوند. در بلندمدت، ابرهای رادیواکتیو توسط باد در مناطق دور ریزش می‌کند و باعث آلوده شدن موجودات، آب و محیط زندگی می‌‌شود. دانشمندان با بررسی اثرات مواد رادیواکتیو روی بازماندگان بمباران ناکازاکی و هیروشیما دریافتند که این مواد باعث: ایجاد تهوع، آب‌مروارید چشم، ریزش مو و کم‌شدن تولید خون در بدن می‌شود. در موارد حادتر، مواد رادیواکتیو باعث ایجاد سرطان و نازایی هم می‌شوند. سلاح‌های اتمی دارای نیروی مخرب باورنکردنی هستند، به همین دلیل دولتها سعی دارند تا بر دستیابی صحیح به این تکنولوژی نظارت داشته باشند تا دیگر اتفاقی بدتر از انفجارهای ناکازاکی و هیروشیما رخ ندهد. منبع :www.best of persia.com & mollasadra ضرورت انرژی هسته‌ای کاربرد روز افزون انرژی یکی از مظاهر مهم زندگی جدید است. مقدار انرژی مصرفی در ایلات متحده ، که یک کشور صنعتی پیشرفته است بین سالهای 1920 تا 1970 با ضریبی حدود 40 افزایش یافته است. این بدان معنی است که در طول این 50 سال ، مقدار مصرف انرژی تقریبا هر 10 سال دو برابر شده است. با آنکه هنوز زغال سنگ و نفت وجود دارد. آشکار شده است که حتی با کوشش‌های بیشتر برای استفاده محتاطانه و صرفه جویانه از انرژی ، بازهم منابع انرژی جدیدی لازم است، انرژی حاصل از شکافت هسته (و در دو مدت ، از همجوشی) می تواند این نیاز را مرتفع سازد. آیا بحران انرژی حل میشود؟ نیاز برای منابع جدید انرژی در بحران انرژی که ایالات متحده ، کشورهای غربی و ژاپن در سالهای 1974- 1973 با آن مواجه بودند شدیدا احساس میشد. این کمبود ناشی از آن بود که کشورهای تولید کننده نفت در خاورمیانه حمل نفت به بعضی از کشورهای پیشرفته صنعتی را کاهش دادند. این گونه رویدادها نظرها را بر روشهای دیگر تولید انرژی متمرکز کرد. از مصرف زغال سنگ که آلودگی بیشتری دارد به انرژی خورشیدی ، و به نقش صنعت توان هسته‌ای در اقتصاد ما کشانید. ارمغان فناوری هسته‌ای پیشرفت توان هسته‌ای در ایالات متحده از آنچه در پایان جنگ جهانی دوم انتظار می رفت، کندتر بوده است. به دلایل گوناگون ، اداری و فنی عمدتا در ارتباط با جنگ سرد با اتحاد شوروی ، کمیسیون انرژی اتمی آمریکا ( (AAEC) که امروزه مرکز انرژی Department of Energy نامیده میشود. تاکیدی بر پژوهش ، درباره سیستمهای توان الکتریکی هسته‌ای نداشت تا آنکه در 1953 آیزنهاور به این امر اقدام کرد. در طی سالهای 1960 توان الکتریکی هسته‌ای از لحاظ اقتصادی با هیدروالکتریسیته و الکتریسیته حاصل از زغال سنگ و نفت رقابت آمیز شد. در آغاز سال 1978، 65 راکتور هسته‌ای با ظرفیتی بیش از 47 میلیون کیلووات که حدود 9% تولید توان کل الکتریکی ملی است در حال کار بود. با حدود 90 راکتور که در دست ساختمان بود انتظار میرفت که بخش هسته‌ای محصول الکتریسیته امریکا در 1980 به حدود 17% و در 1985 به حدود 28% برسد. در مابقی جهان ، در آغاز 1978 ، حدود 130 راکتور توان هسته‌ای با ظرفیتی حدود 50 میلیون کیلووات در حال کار بود ، و انتظار میرفت در سال 1995 تعداد آنها به حدود 325 راکتور برسد. قدرت انرژی هسته‌ای روش‌های استفاده از انرژی هسته‌ای کاملا تازه تکامل یافته‌اند، اما نخستین نتایج به دست آمده از به کارگیری این روش‌ها مهم‌اند. بدون تردید ، تکامل بیشتر روش‌های تولید و کاربرد انرژی هسته‌ای فرصت‌های بی سابقه جدیدی را در پیش روی دانش ، فن و صنعت فراهم خواهد آورد. تجسم میزان کامل این فرصت‌ها در مرحله نوین دشوار است. آزادی انرژی هسته‌ای قدرت بیکرانی را در اختیار انسان گذاشته است مشروط بر این که این انرژی در راه هدف‌های صلح آمیز به کار گرفته شود. باید این را نیز به خاطر داشت که طراحی راکتور‌های هسته‌ای یکی از نتایج بسیار مهم ساختا درونی ماده است. تابش گسیلی از اتم‌ها و هسته‌های اتمی نامرئی و نا محسوس به نتیجه عملی کاملا مرئی ، یعنی آزاد سازی و استفاده از انرژی هسته‌ای نهان در اورانیوم ، منتهی شده است. این نتیجه به یقین اثبات میکند که نظرات علمی ما درباره اتم‌ها و هسته‌های اتمی درست‌اند، یعنی واقعیت عینی طبیعت را باز تاب میدهند. شکافت هسته‌ای از ویکی‌پدیا، دانشنامهٔ آزاد پرش به: ناوبری, جستجو شکافت هسته ای فرآیندی است که در آن یک اتم سنگین مانند اورانیوم به دو اتم سبکتر تبدیل می‌شود. وقتی هسته‌ای با عدد اتمی زیاد شکافته شود، بر پایه فرمول اینشتین، مقداری از جرم آن به انرژی تبدیل می‌شود. از این انرژی در تولید برق (در نیروگاه هسته‌ای) یا تخریب (سلاح‌های هسته‌ای) استفاده می‌شود. اوتوهان زمانی که قصد داشت از بمباران اورانیوم با نوترون آن را به رادیم تبدیل کند دریافت که به اتم بسیار کوچک‌تری دست یافته‌است.در تمام واکنش‌های هسته‌ای که تا ان زمان شناخته شده بود تنها ذرات کوچک از هسته جدا می‌شدند اما این بار یک تقسیم بزرگ رخ داده بود. لایز میتنر و اوتو فریش دریافتند که فراوردهٔ این بمباران نوترونی باریم است و جرم هر اتم اورانیم هنگام تبدیل شدن به ذرات کوچک‌تر به اندازهٔ یک پنجم جرم یک پروتون کاهش می‌یابد و این جرم مطابق رابطهٔ اینشتین E=mc² به انرژی تبدیل شده‌است.به خاطر شباهت این پدیدهٔ تقسیم هسته با تقسیم سلولی میتنر و فریش آن را شکافت نامیدند.مقالهٔ این یافته در یازدهم فوریهٔ ۱۹۳۹ در نشریهٔ نیچر با عنوان «واکنش هسته‌ای نوع جدید» منتشر شد. در تصویر اتم اورانیم-۲۳۵ دیده می‌شود که پس از برخورد یک نوترون متلاشی شده و پرتو‌های رادیو اکتیو از خود صادر می‌کند.سپس به دو عنصر باریم-۱۴۱ و کریپتون-۹۲ تقسیم شده و به پایداری می‌رسدودر ضمن سه عدد نوترون دیگر آزاد می کند که هر یک موجب شکافت یک هسته ی اورانیوم دیگر می شوند واین واکنش زنجیره ای مرتب ادامه پیدا میکند . اورانیوم از ویکی‌پدیا، دانشنامهٔ آزاد پرش به: ناوبری, جستجو اورانیوم در جدول تناوبی اورانیوم یکی از عنصرهای شمیایی است که عدد اتمی آن ۹۲ و نشانه آن U است و در جدول تناوبی جزو آکتنیدها قرار می‌گیرد. ایزوتوپ ‎۲۳۵U آن در نیروگاه‌های هسته‌ای به عنوان سوخت و در سلاح‌های هسته‌ای به عنوان ماده منفجره استفاده می‌شود. اورانیوم به طور طبیعی فلزی است سخت، سنگین، نقره‌ای رنگ و پرتوزا. این فلز کمی نرم تر از فولاد بوده و تقریبآ قابل انعطاف است. اورانیوم یکی از چگالترین فلزات پرتوزا است که در طبیعت یافت می‌شود. چگالی آن ۶۵٪ بیشتر از سرب و کمی کمتر از طلا است. سال‌ها از اورانیوم به عنوان رنگ دهنده لعاب سفال یا برای تهیه رنگ‌های اولیه در عکاسی استفاده می‌شد و خاصیت پرتوزایی (رادیواکتیو) آن تا سال ۱۸۶۶ ناشناخته ماند و قابلیت آن برای استفاده به عنوان منبع انرژی تا اواسط قرن بیستم مخفی بود. فراوانی این عنصر از نظر فراوانی در میان عناصر طبیعی پوسته زمین در رده ۴۸ قراردارد. اورانیوم در طبیعت بصورت اکسید و یا نمک‌های مخلوط در مواد معدنی (مانند اورانیت یا کارونیت) یافت می‌شود. این نوع مواد اغلب از فوران آتشفشان‌ها بوجود می‌آیند و نسبت وجود آنها در زمین برابر دو در میلیون نسبت به سایر سنگها و مواد کانی است. اورانیوم طبیعی شامل ‎۹۹/۳٪ از ایزوتوپ ‎۲۳۸U و ‎۰/۷٪ ‎۲۳۵U است. این فلز در بسیاری از قسمت‌های دنیا در صخره‌ها، خاک و حتی اعماق دریا و اقیانوس‌ها وجود دارد. میزان وجود و پراکندگی آن از طلا، نقره یا جیوه بسیار بیشتر است. ده کشوری که ۹۴٪ از استخراج اورانیوم جهان در آنها انجام می‌گیرد. تاریخچه اورانیوم در سال ۱۷۸۹ توسط مارتین کلاپروت (Martin Klaproth) شیمی دان آلمانی از نوعی اورانیت بنام پیچبلند (Pitchblende) کشف شد. این نام اشاره به سیاره اورانوس دارد که هشت سال قبل از آن، ستاره شناسان آن را کشف کرده بودند. اورانیوم یکی از اصلی‌ترین منابع گرمایشی در مرکز زمین است و بیش از ۴۰ سال است که بشر برای تولید انرژی از آن استفاده می‌کند. دانشمندان معتقد هستند که اورانیوم بیش از ۶/۶ بیلیون سال پیش در اثر انفجار یک ستاره بزرگ بوجود آمده و در منظومه خورشیدی پراکنده شده‌است. ویژگی‌های اورانیوم اورانیوم سنگین‌ترین (به بیان دقیقتر چگالترین) عنصری است که در طبیعت یافت می‌شود (هیدروژن سبکترین عنصر طبیعت است.) اورانیوم خالص حدود ‎۱۸/۷ بار از آب چگالتر است و همانند بسیاری از دیگر مواد پرتوزا در طبیعت بصورت ایزوتوپ یافت می‌شود. اورانیوم شانزده ایزوتوپ دارد. حدود ‎۹۹/۳ درصد از اورانیومی که در طبیعت یافت می‌شود ایزوتوپ ۲۳۸ (U-۲۳۸) است و حدود ‎۰/۷ درصد ایزوتوپ ۲۳۵ (U-۲۳۵). دیگر ایزوتوپ‌های اورانیم بسیار نادر هستند. در این میان ایزوتوپ ۲۳۵ برای بدست آوردن انرژی از نوع ۲۳۸ آن بسیار مهم‌تر است چرا که U-۲۳۵ (با فراوانی تنها ‎۰/۷ درصد) آمادگی آن را دارد که در شرایط خاص شکافته شود و مقادیر زیادی انرژی آزاد کند. به این ایزوتوپ «اورانیوم شکافتنی» (Fissil Uranium) هم گفته می‌شود و برای شکافت هسته‌ای استفاده می‌شود. اورانیوم نیز همانند دیگر مواد پرتوزا دچار تباهی می‌شود. مواد رادیو اکتیو دارای این خاصیت هستند که از خود بطور دائم ذرات آلفا و بتا و یا اشعه گاما منتشر می‌کنند. U-۲۳۸ باسرعت بسیار کمی تباه می‌شود و نیمه عمر آن در حدود ‎۴،۵۰۰ میلون سال (تقریبآ برابر عمر زمین) است. این موضوع به این معنی است که با تباه شدن اورانیوم با همین سرعت کم انرژی برابر ‎۰/۱ وات برای هر یک تن اورانیوم تولید می‌شود و این برای گرم نگاه داشتن هسته زمین کافی است. شکاف هسته‌ای اورانیوم U-۲۳۵ قابلیت شکاف هسته‌ای دارد. این نوع از اتم اورانیوم دارای ۹۲ پروتون و ۱۴۳ نوترون است (بنابراین جمعآ ۲۳۵ ذره در هسته خود دارد و به همین دلیل U-۲۳۵ نامیده می‌شود)، کافی است یک نوترون دریافت کند تا بتواند به دو اتم دیگر تبدیل شود. این عمل با بمباران نوترونی هسته انجام می‌گیرد، در این حالت یک اتم U-۲۳۵ به دو اتم دیگر تقسیم می‌شود و دو، سه و یا بیشتر نوترون آزاد می‌شود. نوترون‌های آزاد شده خود با اتم‌های دیگر U-۲۳۵ ترکیب می‌شوند و آنها را تقسیم کرده و به همین منوال یک واکنش زنجیره‌ای از تقسیم اتم‌های U-۲۳۵ تشکیل می‌شود. اتم U-۲۳۵ با دریافت یک نوترون به اورانیوم ۲۳۶ تبدیل می‌شود که ثبات و پایداری نداشته و تمایل دارد به دو اتم با ثبات تقسیم شود. انجام عمل تقسیم باعث آزاد شدن انرژی می‌شود بگونه‌ای که جمع انرژی حاصل از تقسیم زنجیره اتمهای U-۲۳۵ بسیار قابل توجه می‌شود. نمونه‌ای از این واکنش‌ها به اینصورت است: U-۲۳۵ + n \rightarrow Ba-۱۴۱ + Kr-۹۲ + ۳n + ‎۱۷۰ Million electron Volts‎ U-۲۳۵ + n \rightarrow Te-۱۳۹ + Zr-۹۴ + ۳n + ۱۹۷ Million electron Volts که در آن: electron Volt = ۱٫۶۰۲ x ۱۰-۱۹ joules (یک ژول انرژی برابر توان یک وات برای مصرف در یک ثانیه‌است.) مجموع این عملیات ممکن است در محلی بنام رآکتور هسته‌ای انجام گیرد. رآکتور هسته‌ای می‌تواند از انرژی آزاد شده برای گرم کردن آب استفاده کند تا در نهایت از آن برای راه اندازی توربین‌های بخار و تولید برق استفاده شود.
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد